

УНИВЕРСАЛЬНЫЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ ОТОПЛЕНИЯ

ZONT H2000+ PRO.V2

ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

ML.TD.ZH2000PRO.V2.001

ООО "Микро Лайн" 2024

О документе

Уважаемые пользователи!

В настоящем документе приведена полная техническая информация на универсальный контроллер ZONT 2000+ PRO.V2 (арт. ML00006086), далее по тексту – Контроллер.

Структура документа:

Паспорт – включает в себя сведения о назначении, функциональных возможностях, технических характеристиках Контроллера.

Руководство пользователя – включает в себя описание алгоритмов и режимов работы Контроллеров, правил и способов управления отоплением через онлайн-сервис, состоит из двух частей:

Часть 1 – Описание алгоритмов работы устройства и веб-сервиса. Пользовательские настройки и правила эксплуатации;

Часть 2 – Монтаж и подключение. Настройка конфигурации. Дополнительные возможности;

Приложения – Гарантийные обязательства, схемы подключения датчиков и дополнительного оборудования, рекомендации по настройке различных функций.

Обращаем Ваше внимание на то, что настоящий документ постоянно обновляется и корректируется. Это связано с разработкой и применением новых функций онлайн-сервиса ZONT. В связи с этим тексты некоторых разделов могут изменяться и/или дополняться, а некоторые иллюстрации и скриншоты), представленные в документе, могут устареть.

Если Вы обнаружили ошибки и/или неточности – отправьте, пожалуйста, описание проблемы с указанием страницы документа на e-mail: <u>support@microline.ru</u>.

Актуальная версия документа доступна на сайте <u>https://zont.online/</u> в разделе "<u>Поддержка.Техническая документация</u>". Документ доступен для чтения и скачивания в формате *.pdf.

Ŧ

СОДЕРЖАНИЕ

О документе	2
1. Назначение устройства	9
2. Функциональные возможности	. 10
3. Технические характеристики	10
4. Комплект поставки	. 13
5. Соответствие стандартам	. 13
6. Условия транспортировки и хранения	14
7. Ресурс устройства и гарантии производителя	14
8. Производитель	. 14
9. Свидетельство о приемке	. 14
Часть 1. Описание веб-сервиса и алгоритмов работы устройства. Пользовательские	
настройки и правила эксплуатации	.16
Использование по назначению	. 16
Квалификация специалистов по проектированию, монтажу, настройке и обслуживанию	. 16
1. Об устройстве	. 17
1.1 Назначение	17
1.2 Подключение к источнику тепла (котлу)	17
1.3 Управление зонами (контурами) отопления	. 18
1.4 Управление контроллером	19
2. Веб-сервис и мобильное приложение ZONT	. 19
3. Настроика связи Контроллера с Сервером	. 23
3.1 Подключение к мобильной сети GSM	. 23
3.2 Подключение к локальной сети Ethernet	23
3.3 Подключение к сети WI-FI	23
4. Описание личного каринета пользователя сервиса ZON I	25
4.1 Режимы отооражения личного каоинета	25
4.2 Главное меню Личного кабинета	. 27
4.3 Верхнее меню Личного каоинета	28
	30
4.4.2 Отопительные контуры	२। २२
4.4.5 ОТОПИТЕЛЬНЫЕ РЕЖИМЫ	
	. 34
	. 34
	. 55
4.4.7 Индикация отказа датчика температуры в контуре	. 30
ч.ч.о индикация аварии когла и прочих важных сооытии	25
ч. о выладка т г дуйнул	. JU
4.0 Биладка СОВВНИЛ	. JO
/ οινιαμκα ιντινιει οι 4.8 Βκπασκα "ΟΧΡΔΗΔ"	. 50 28
	20
о. Блок пастройки копфинурации коптроллера	. 33

5.1 Блок настроек "Общее"	40
5.1.1 Общие настройки	40
5.1.2 Настройка уведомлений по E-mail и Push	41
5.1.3 Совместный доступ	42
5.1.4 Пользователи	43
5.1.5 Сервис	43
5.1.6 Настройки интерфейса	
5.2 Блок настроек "Отопление"	
5.2.1 Отопление	44
5.2.2 Режимы отопления	45
5.2.3 Датчики температуры	47
5.2.4 Исполнительные устройства	
5.3 Блок настроек "Управление"	
5.3.1 Датчики	
5.3.2 Действия с выходами	49
5.3.3 Элементы управления	
5.3.4 Интерфейс пользователя	49
5.3.5 Сценарии	
5.4 Блок настроек "Радиоустройства"	50
5.4.1 Радиомодули	50
5.4.2 Радиобрелоки	50
5.4.3 Радиореле	50
5.4.4 Радиодатчики	50
5.5 Блок настроек "Охрана"	51
5.6 Блок настроек "Прочее"	51
5.6.1 Устройства Modbus	51
5.6.2 Протокол MQTT	
6. Служебные команды и настройки	
7. Сброс к заводским настройкам, рестарт, сброс привязки в сети wi-fi	54
Руководство пользователя	56
Часть 2. Монтаж и подключение. Настройка конфигурации	56
1. Техника безопасности	56
2. Подключение основного и резервного электропитания	56
3. Подключение каналов связи с сервером	58
4. Подключение радиоустройств	
4.1 Радиоустройства 433 МГц	
4.2 Радиоустройства 868 МГц	
4.3 Регистрации радиоустройств	61
4.3.1 Регистрация радиоустройств 433 МГц	61
4.3.2 Регистрация радиоустройств 868 МГц	62
5. Подключение аналоговых датчиков и устройств с дискретным выходом	63
5.1 Аналоговые датчики	64
5.2 Дискретные датчики и устройства с дискретным выходом	66

5.3 Охранные и информационные датчики	67
6. Подключение датчиков температуры	67
6.1 Аналоговые датчики температуры	68
6.2 Цифровые датчики температуры DS18S20 / DS18B20	69
6.3 Цифровые датчики ZONT	70
6.4 Радиодатчики ZONT	71
6.5 Контроль уличной температуры по данным с погодного сервера	71
6.6 Особенности настройки датчиков температуры	72
7. Подключение устройств к релейным выходам	72
8. Подключение устройств к аналоговому выходу 0-10 В	73
9. Подключение устройств к аналоговому входу 4-20 мА	73
10. Индикаторы работы Контроллера	74
11. Настройка конфигурации для управления Отоплением и ГВС	75
11.1 Котловые и Отопительные контуры	75
11.2 Параметр "запрос на тепло"	76
11.3 Котловой контур	77
11.3.1 Основные настроечные параметры	77
11.3.2 Дополнительные параметры настройки	79
11.4 Отопительный контур	80
11.4.1 Основные параметры настройки	80
11.4.2 Дополнительные параметры настройки	82
11.4.3 Прямой отопительный контур	85
11.4.4 Смесительный отопительный контур	85
11.4.5 Особенности работы Смесительного контура при разных способах регулировани	я.86
11.5 Контур ГВС	88
11.5.1 Котел с проточным теплообменником или с бойлером, подключенным к котлу	88
11.5.2 БКН за гидрострелкой, насосом загрузки бойлера управляет ZONT	89
11.5.3 Функция "Антилегионелла"	89
12. Погодозависимое регулирование (ПЗА)	90
12.1 Алгоритм работы функции	90
12.2 Особенности регулирования в отопительном контуре с ПЗА	91
12.3 ПЗА в котловом контуре	91
12.4 Подбор и задание кривых ПЗА	92
13. Каскад котлов	93
13.1 Типы и стратегии каскадов	93
13.2 Настроечные параметры модулирующего каскада	94
13.3 Настроечные параметры релейного каскада	95
13.4 Общие параметры для настройки каскада	97
14. Котловые режимы	97
14.1 Варианты работы котлов в Котловых режимах	97
14.2 Настройка запуска резервного котла	99
14.3 Настройка запуска котлов по расписанию	.100
14.4 Настройка параллельного запуска всех котлов	101

14.5 Настройка независимого управления котлами	102
14.6 Запуск Котлового режима по событию	102
15. Исполнительные устройства для контуров отопления и ГВС	103
15.1 Адаптеры котлов	104
15.2 Реле	105
15.3 Насосы	106
15.4 Краны смесителей	107
15.5 Тестирование правильности подключения исполнительный устройств	109
15.6 Аналоговые выходы 0-10 Вольт	109
15.6.1 Использование Выхода 0-10 Вольт для управления котлом	109
15.6.2 Использование Выхода 0-10 Вольт для управления сервоприводом	111
15.6.3 Управление аналоговым выходом 0-10 Вольт в ручном режиме	113
16. Управление выходами Контроллера	114
17. Элементы управления и индикации	115
18. Сценарии	116
18.1 Редактор сценария	117
18.1.1 Блок запуска сценария	118
18.1.2 Блок логики сценария	119
18.1.3 Блок значений датчиков	119
18.1.4 Блок времени	119
18.1.5 Блок состояния	120
18.1.6 Блок действий	120
18.1.7 Блок режимов отопления	121
18.2 Особенности написания сценария	121
18.3 Примеры составления сценария	122
19. Интерфейс пользователя	123
20. Функции контроля безопасности	125
21. Блоки расширения количества входов и выходов Контроллера	127
ПРИЛОЖЕНИЯ	128
Приложение 1. Гарантийные обязательства и ремонт	128
Приложение 2. Условные обозначения, сокращения и аббревиатуры	130
Приложение 3. Внешний вид и назначение контактных групп Контроллеров	133
Приложение 4. Схемы и рекомендации по подключению	135
1. Шина RS-485	135
1.1 Радиомодуль МЛ-590	136
1.2 Адаптер цифровых шин	136
1.3 Панель управления МЛ-753 и МЛ-753 WI-FI	137
1.4 Термостат МЛ-232	137
1.5 Радиотермостат МЛ-332	138
1.5 Цифровые датчики ZONT	138
2. Интерфейс 1-wire	139
3. Вход NTC	141
4. Универсальный вход/выход	141

4.1 Подключение аналоговых датчиков температуры NTC	142
4.2 Подключение аналоговых датчиков давления	
4.3 Подключение датчиков дыма	
4.4 Подключение датчиков протечки	146
4.5 Подключение аналоговых датчиков с выходом 4-20 мА	
4.6 Подключение аналоговых резистивных датчиков	149
4.7 Подключение датчиков с дискретным выходом	
4.7.1 Магнитоконтактный датчик (геркон)	151
4.7.2 ИК датчик движения	151
4.7.3 Подключение комнатного термостата	
4.7.4 Контроль Аварии котла управляемого релейным способом	
5. Насосы и смесители	155
5.1 Электропривод двухходового смесительного крана (термоголовки)	
5.2 Электропривод трехходового смесительного крана	156
5.3 Электропривод с аналоговым входом 0-10 Вольт	157
5.4 Подключение насоса	158
6. Сирены и оповещатели	158
7. Считыватели ключей Touch Memory	159
8. Внешние котловые панели управления	160
Приложение 5. SMS оповещение и управление	160
1. SMS оповещения	
2. SMS управление	

УНИВЕРСАЛЬНЫЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ ОТОПЛЕНИЯ

ZONT H2000+ PRO.V2

ΠΑСΠΟΡΤ

ML.TD.ZH2000PRO.V2.001

Уважаемые пользователи!

Вы приобрели технически сложное устройство для автоматизации системы отопления вашего дома с широкими функциональными возможностями. Грамотная реализация алгоритмов работы устройства потребует от Вас специальных знаний о системе отопления, опыта монтажа низковольтного оборудования и настройки программируемых контроллеров.

Мы постарались максимально упростить и сделать интуитивными все настройки Контроллера. Однако если на определенном этапе Вы поймете, что Вашей квалификации недостаточно, пожалуйста, обратитесь за помощью к сертифицированным специалистам. Контакты размещены на <u>сайте</u> в разделе "<u>Где установить</u>", а также на <u>Бирже специалистов ZONT</u>

Библиотека ZONT support.microline.ru

Установщики zont-online.ru

Биржа специалистов lk.microline.ru/workers

Желаем Вам успеха в реализации Ваших идей!

С уважением, МИКРО ЛАЙН.

1. Назначение устройства

Универсальный контроллер ZONT H2000+ PRO.V2, далее в тексте Контроллер, представляет собой программируемое устройство, предназначенное для автоматизации работы, дистанционного контроля и управления системами отопления и другими инженерными системами.

Дистанционный контроль осуществляется через веб-сервис и приложение для мобильных устройств с использованием передачи данных по каналам связи GSM, Ethernet и Wi-Fi.

2. Функциональные возможности

- Контроль состояния и автоматическое зональное управление системой отопления с целью поддержания заданных режимов отопления, в том числе с использованием погодозависимого алгоритма управления;
- Контроль состояния и управление любым источником тепла, в том числе каскадом котлов;
- Контроль состояния проводных и радиоканальных датчиков различного назначения;
- Управление насосами, сервоприводами, термоголовками и любыми другими исполнительными устройствами систем отопления, вентиляции, а также различными электрическими приборами и инженерными системами;
- Автоматическое информирование об авариях, возникающих критических ситуациях и отклонении параметров работы системы отопления и контролируемых датчиков от заданных значений;
- Дистанционное управление любыми элементами инженерных систем (воротами, шлагбаумами, светом, поливом и т.п.) по расписанию, сценариям, срабатыванию контролируемых датчиков;
- Контроль охранных датчиков и включение сигнализации при нарушении режима охраны (функция охранной сигнализации);
- Обмен данными и командами с различными устройствами поддерживающими сетевые протоколы MQTT и Modbus RTU;
- Интеграция с системой умного дома Home Assistant.

3. Технические характеристики

Напряжение питания

- **+12** В основное питание: от внешнего источника стабилизированного питания. Допустимое напряжение на входе прибора: 9 –18 В постоянного тока, ток потребления не более 0,7 А.
- Резервное питание: от встроенного Li-ion аккумулятора LIR14500, 3,7 Вольт, 800 мА/ч, напряжение схемы заряда 4,2 В.

Примечание: Встроенный резервный аккумулятор поддерживает только работу внутренней схемы Контроллера. Релейные выходы при питании от резервного аккумулятора не работают.

- **+12 В Выход 1:** предназначен для питания внешних устройств. Максимальный суммарный ток подключаемых потребителей не должен превышать 750 мА.
- **+12 В Выход 2:** предназначен для питания внешних устройств. Максимальный суммарный ток подключаемых потребителей не должен превышать 100 мА.

Каналы связи и передачи данных

- **GSM:** тип модема: LTE Cat 1 Частотные диапазоны: LTE-FDD B1/B3/B5/B7/B8/B20 GSM/GPRS/EDGE 900/1800 МГц
- Wi-Fi: частотный диапазон 2,4 ГГц, 802.11 b/g/n;
- Ethernet: TCP/IP, 10/100BASE-T.

Цифровые интерфейсы обмена данных

- **1-Wire:** интерфейс для цифровых датчиков температуры DS18S20 (DS18B20) и ключей Touch Memory. Количество датчиков на одном интерфейсе до 20-ти шт.;
- **RS-485 (верхний):** интерфейс для оригинальных цифровых устройств ZONT;
- **RS-485 (нижний):** интерфейс вариативного применения: для оригинальных цифровых устройств ZONT, или для устройств, поддерживающих протокол Modbus RTU.

Примечание: интерфейс RS-485 допускает одновременное подключение до 32-х устройств.

Протоколы взаимодействия со сторонним оборудованием

- Modbus RTU: открытый коммуникационный протокол. Контроллер является master-устройством. Техническая документация с описанием протокола Modbus RTU и инструкцией по использованию протокола в контроллерах ZONT доступна по <u>ссылке</u>.
- **MQTT:** сетевой протокол для потоковой передачи данных между устройствами IoT (интернет вещей). Техническая документация с описанием протокола MQTT и инструкцией по использованию в контроллерах ZONT доступна по <u>ссылке</u>.

Взаимодействие с радиоустройствами

- Встроенный радиомодуль на частоте 433 МГц поддерживает стандартные радиодатчики и радиобрелоки, использующие кодировку РТ2262 и EV1527 (для применения требуется антенна, в комплект не входит и приобретается дополнительно);
- Подключаемый радиомодуль ZONT МЛ-590 на частоте 868 МГц, поддерживает оригинальные радиодатчики, радиобрелоки и радиоустройства ZONT. Один радиомодуль контролирует не более 40 радиоустройств. Допускается одновременное подключение трех радиомодулей.

Взаимодействия с цифровыми шинами котлов – реализуется через дополнительные адаптеры:

• Универсальный адаптер цифровых шин поддерживает цифровые интерфейсы:

OpenTherm, **E-Bus** (котлы Vaillant и Protherm), **BridgeNet** (котлы Ariston), **BSB** (котлы с платами управления Siemens), оригинальные интерфейсы котлов **Navien** и **WOLF**.

- Адаптер цифровой шины котлов Rinnai;
- Адаптер цифровой шины котлов **ARDERIA**;

Адаптер цифровой шины EMS+ (конденсационные котлы BOSCH/Buderus и цифровой шины котлов Daesung

Входы и Выходы

- Вход NTC для аналоговых датчиков температуры NTC 10кОм.
- Универсальный вход/выход контакт вариативного применения: может быть использован или как аналоговый (дискретный) вход, или как выход "открытый коллектор" (далее в тексте "Выход ОК").
 - ТХ аналогового (дискретного) входа: входное напряжение 0-30 В; дискретность измерения 12 бит; погрешность не более 2%; подтяжка к цепи плюс 3,3 В через резистор 100 КОм.
 - ТХ выхода ОК: максимальный ток каждого выхода не более 100 мА, напряжение не более 30 В; суммарный ток выходов не должен превышать 350 мА; сопротивление во включенном состоянии – не более 10 Ом.
- Релейный выход встроенное реле постоянного тока (максимальное) 30 В, максимальный ток коммутации 7 А; коммутируемое напряжение переменного тока (эффективное максимальное) 240 В; максимальный ток коммутации 3 А.
- Аналоговый выход 0-10В для пропорционального управления котлами, сервоприводами и прочими электрическими устройствами, поддерживающими такой способ управления.
- Токовый вход 4-20мА предназначен для контроля датчиков и систем, результаты измерений которых определяются по величине тока выхода.
- Кнопка RESTORE многофункциональная кнопка аппаратного сброса.
 - Три нажатия сброс настроек Wi-Fi сети;
 - Пять нажатий перезагрузка Контроллера;
 - Удержание более 10 сек сброс Контроллера к заводским настройкам.
- Корпус: Оригинальный, пластиковый, с креплением на DIN-рейку. Габаритные размеры (мм) - 235х90х60 Типоразмер 13 DIN Масса - 0,85 кг.
- Класс защиты по ГОСТ 14254-2015: IP20.
- Диапазон рабочих температур: минус 25 °C плюс 70 °C.
- Максимально допустимая относительная влажность: 85%, без образования конденсата.

Спецификация контроллера

Количество управляемых котлов	до 20-ти

Количество адаптеров цифровых шин	до 20-ти
Количество входов NTC	8
Количество универсальных входов/выходов	4
Количество релейных выходов	8
Количество аналоговых выходов 0-10 В	2
Количество токовых входов 4-20 мА	2
Количество цифровых входов 1-Wire	2
Количество подключаемых блоков расширения	5

4. Комплект поставки

Контроллер, шт	1
Блок питания, шт	1
Антенна GSM, шт	1
Аналоговый датчик температуры ZONT МЛ-773 (NTC), шт	1
Аналоговый датчик температуры в гильзе (NTC), шт	4
Сим-карта, шт	1
Регистрационная пластиковая карта, шт	1
Винтовые клеммники, комплект	1
Паспорт изделия	1

5. Соответствие стандартам

Устройство по способу защиты человека от поражения электрическим током относится к классу защиты 0 по ГОСТ 12.2.007.0-2001.

Конструктивное исполнение устройства обеспечивает пожарную безопасность по ГОСТ IEC 60065-2013 в аварийном режиме работы и при нарушении правил эксплуатации.

Для применения устройства не требуется получения разрешения на выделение частоты (Приложение 2 решения ГКРЧ № 07-20-03-001 от 7 мая 2007 г.).

Устройство соответствует требованиям технических регламентов таможенного союза ТР ТС 004/2011 "О безопасности низковольтного оборудования" и ТР ТС 020/2011 "Электромагнитная совместимость технических средств".

Устройство изготовлено в соответствии с ТУ 4211-001-06100300-2017.

Сертификаты или декларации соответствия техническому регламенту и прочим нормативным документам можно найти на сайте <u>https://zont.online/</u> в разделе "<u>Поддержка. Техническая документация</u>".

6. Условия транспортировки и хранения

Устройство в упаковке производителя допускается перевозить в транспортной таре различными видами транспорта в соответствии с действующими правилами перевозки грузов.

Условия транспортирования – группа II по ГОСТ 15150 – 69 с ограничением воздействия пониженной температуры до минус 40 °C.

Условия хранения на складах поставщика и потребителя – группа II по ГОСТ 15150 – 69 с ограничением воздействия пониженной температуры до минус 40 °С.

Срок хранения при соблюдении условий хранения – не ограничен.

7. Ресурс устройства и гарантии производителя.

Срок службы (эксплуатации) устройства – 5 лет.

Гарантийный срок – 12 месяцев с момента продажи или 24 месяца с даты производства.

Полные условия гарантийных обязательств производителя в Приложении 1. "Гарантийные обязательства и ремонт".

8. Производитель

ООО «Микро Лайн»

Адрес: Россия, 607630, Нижегородская обл., г. Нижний Новгород, сельский пос. Кудьма, ул. Заводская, строение 2, помещение 1.

Тел/факс: +7 (831) 220-76-76

Служба технической поддержки: e-mail: support@microline.ru

9. Свидетельство о приемке

Устройство проверено и признано годным к эксплуатации.

Дата изготовления _____ ОТК (подпись/штамп) ___

ML.TD.ZH2000PRO.V2.001

УНИВЕРСАЛЬНЫЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ ОТОПЛЕНИЯ

ZONT H2000+ PRO.V2

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Часть1. Описание веб-сервиса и алгоритмов работы устройства. Пользовательские настройки и правила эксплуатации

ML.TD.ZH2000PRO.V2.001

Часть 1. Описание веб-сервиса и алгоритмов работы устройства. Пользовательские настройки и правила эксплуатации.

Использование по назначению

Универсальный контроллер ZONT предназначен для автоматизации систем отопления и других инженерных систем. Использование Контроллера не по назначению может повлечь за собой повреждения Контроллера, подключенного к нему оборудования и других материальных ценностей.

ВНИМАНИЕ!!! Контроллер может управлять важными системами жизнеобеспечения зданий и сооружений. Соблюдайте все необходимые меры безопасности для предотвращения аварий и исключения возможности нанесения ущерба здоровью, жизни и имуществу.

Не снимайте и не деактивируйте никакие предохранительные и контрольные устройства котлов, систем отопления и других инженерных систем. Незамедлительно устраняйте сбои и/или повреждения инженерных системы или поручите это специалистам сервисных служб.

ВНИМАНИЕ!!! Для оперативного информирования о критическом состоянии системы отопления и других инженерных систем настройте оповещения как минимум о следующих событиях:

- об отключении сети электроснабжения;
- о предельном снижении температуры воздуха в самом холодном помещении;
- о предельном снижении температуры обратного потока теплоносителя;
- об аварийных сообщениях и сигналах инженерных систем.

Оповещение выполняется при условии наличия связи контроллера с сервером ZONT. Поэтому необходимо контролировать баланс средств на Сим-карте установленной в контроллер и работоспособность сети WI-FI и/или LAN. Для отправки оповещения контроллеру необходим хотя бы один канал связи.

ВНИМАНИЕ!!! Отсутствие связи контроллера с сервером не влияет на управление системой отопления и других инженерных систем. Настроенный пользователем алгоритм работы контроллера выполняется в автоматическом режиме вне зависимости от наличия связи с сервером.

Квалификация специалистов по проектированию, монтажу, настройке и обслуживанию

Контроллер является частью построенной на его основе системы автоматизации. Квалификация специалистов, осуществляющих проектирование системы автоматизации, монтаж, настройку и техническое обслуживание, должна соответствовать требованиям, предъявляемым к системам автоматизации, частью которой является Контроллер.

Производитель не несет ответственности за ущерб, возникший в результате использования Контроллера. Все риски по использованию Контроллера несет единолично пользователь.

1. Об устройстве

1.1 Назначение

Основное назначение Контроллера – автоматизация управления системой отопления. В системе отопления может быть один или несколько источников тепла (котлов), работающих как независимо, так и в каскаде.

Контроллер управляет работой котлов по запросам от каждого отопительного контура и регулирует температуру теплоносителя в каждом из них, управляя исполнительными устройствами – смесительными группами, насосами, сервоприводами, термоголовками.

Контроллер можно запрограммировать для контроля состояния и автоматического управления любыми электрическими приборами, используемыми как в составе системы отопления, так и в составе других инженерных систем. Он контролирует, состояние проводных и радиоканальных датчиков различного назначения, напряжение питания сети и формирует предупредительные оповещения при аварии котлов, отклонении контролируемых параметров от заданных значений, сработке датчиков и возникновении любых других нештатных ситуаций.

Допускается применение Контроллера в промышленных котельных при наличии штатной автоматики безопасности.

1.2 Подключение к источнику тепла (котлу)

Подключение Контроллера может быть выполнено одним из способов:

Релейное подключение Управление котлом выполняется за счет замыкание (или размыкание) клемм, предназначенных для подключения комнатного термостата. У Контроллера для этой цели может быть использовано любое встроенное реле или выход ОК.

Подключение к Выходу 0-10 В Доступно для котлов, поддерживающих данный способ управления. Контроллер преобразует рассчитанную им уставку температуры теплоносителя в напряжение от 0 до 10-ти вольт и через аналоговый выход 0-10 Вольт передает котлу

Подключение по протоколу Modbus RTU Доступно для котлов, поддерживающих данный протокол. В качестве устройства сопряжения используется оригинальное дополнительное устройство ZONT – <u>Адаптер цифровой шины Modbus</u>

Подключение к цифровой шине котла Доступно для котлов, поддерживающих следующие протоколы:

- OpenTherm открытый протокол цифровых шин отопительных котлов;
- E-Bus протокол цифровых шин котлов Vaillant и Protherm;
- BridgeNet протокол цифровой шины котлов Ariston (серии Net);
- Navien протокол цифровой шины котлов Navien;
- BSB протокол цифровой шины котлов с платой управления Siemens;
- WOLF протокол цифровой шины котлов WOLF.
- Rinnai протокол цифровой шины котлов Rinnai.
- **ARDERIA** протокол цифровой шины котлов Arderia.

- EMS+ протокол конденсационных котлов BOSCH / Buderus
- Daesung протокол цифровой шины котлов Daesung

Для такого управления необходимо использование дополнительного устройства – Адаптера цифровой шины, который может быть Универсальным и Монобрендовым.

Универсальный адаптер (плата) цифровых шин поддерживает протоколы OpenTherm, E-Bus, BridgeNet, BSB, и протоколы котлов Navien и WOLF.

<u>Монобрендовый адаптер Rinnai</u> – поддерживает протокол котлов Rinnai. <u>Монобрендовый адаптер ARDERIA</u> – поддерживает протокол котлов Arderia. <u>Монобрендовый адаптер EMS+ / Daesung</u> – поддерживает протокол конденсационных котлов BOSCH / Buderus и протокол котлов Daesung

Тип протокола цифровой шины подключаемого котла определяется адаптером автоматически. Информация отображается в блоке настройки "Исполнительные устройства / Адаптеры цифровых шин". При необходимости тип протокола можно установить в ручном режиме. через тот же блок настройки.

Примечание: Перечень котлов с указанием типа поддерживаемых протоколов цифровых шин приведен в <u>Библиотеке ZONT</u> в разделе "<u>Схемы подключения</u>". Проверить котел на совместимость с контроллерами ZONT можно <u>в справочной системе на сайте</u>.

Примечание: Контроллер при цифровом подключении может считывать из цифровой шины котла коды ошибок и аварий. Для правильного отображения кода ошибки в блоке настроек "Исполнительные устройства / Адаптеры цифровых шин" должна быть указана модель котла. Если производитель котла использовал стандартную кодировку, то код ошибки, отображаемый в приложении ZONT, соответствует коду из документации на котел. Если производитель котла использовал оригинальную кодировку, то отображаемый код ошибки не будет соответствовать данным из его документации. Поэтому прежде чем приступить к устранению причин возникновения ошибки, необходимо посмотреть код на панели котла и прочитать его описание в документации на котел.

1.3 Управление зонами (контурами) отопления

Регулирование температуры теплоносителя в каждом контуре достигается за счет управления выходами Контроллера и включением/выключением подключенных к ним исполнительных устройств: насосов, электроприводов смесительных кранов и гидроклапанов.

Способы регулирования в контурах отопления:

- регулирование по целевой температуре теплоносителя;
- регулирование по целевой температуре воздуха в помещении;
- регулирование по целевой температуре воздуха в помещении с ПИД-регулированием теплоносителя;
- регулирование по комнатному термостату.

Примечание: Для любого способа может быть использован режим с ПЗА (погодозависимый).

Управление приготовлением ГВС возможно в следующих системах горячего водоснабжения:

- Системах ГВС проточного типа, где котел управляется по цифровой шине и конструктивно выполнен с проточным теплообменником или с встроенным бойлером;
- Системах ГВС накопительного типа, где котел управляется по цифровой шине и к нему подключен бойлер косвенного нагрева;
- Системах ГВС накопительного типа, где бойлер косвенного нагрева с отдельным насосом загрузки размещен за гидрострелкой. Управление насосом загрузки и контроль температуры горячей воды в бойлере выполняет Контроллер.

Подробная информация по настройке приведена в <u>Части 2 Раздел 11 Настройка алгоритмов</u> управления системой отопления.

1.4 Управление контроллером

Дистанционное:

- из личного кабинета владельца в веб-сервисе <u>https://zont.online/;</u>
- из приложения **ZONT** для мобильных устройств на платформе iOS и Android;
- с телефонов владельца и его доверенных лиц через SMS-команды (подробнее в <u>Приложении 5</u> настоящей Документации).

Примечание: Управление Контроллером из приложения и из веб-интерфейса возможно с нескольких устройств одновременно в одном личном кабинете или из разных личных кабинетов при использовании функции <u>"Совместный доступ"</u>.

Локальное:

• управление командами с внешней панели управления МЛ-753 (дополнительное устройство, в комплект поставки не входит).

2. Веб-сервис и мобильное приложение ZONT

Дистанционный контроль и управление работой Контроллера, а также его настройка выполняется через Веб-сервис и мобильное приложение. Для доступа к управлению и настройке необходимо зарегистрировать личный кабинет пользователя, где будут отображаться все устройства ZONT пользователя. Для первичного ознакомления с веб сервисом можно перейти по ссылке <u>Веб-сервис ZONT Демо версия</u>, или сканировать QR-код.

Для регистрации Личного кабинета веб-сервиса ZONT вам потребуются следующие данные:

(1) Сканируйте смартфоном QR-код с регистрационной карты и установите Приложение ZONT:

(2) Откройте **Приложение ZONT** и при необходимости повторно сканируйте QR-код с регистрационной карты для входа в свой **Личный кабинет**.

Примечание: Qr-код может быть голубого цвета.

(3) Добавьте Контроллер в свой Личный кабинет, сканировав желтый QR-код с корпуса прибора:

Установите в Контроллер сим-карту и добавьте ее в конфигурацию, сканировав штрих-код с ее пластика:

Примечание: Сим-карта МТС из комплекта предусматривает выбор из 3-х тарифов и предназначена для применения исключительно в Вашем устройстве. Ее нельзя устанавливать в телефон, планшет или другое устройство ZONT. **При попытке использовать не по назначению**

Сим-карта будет заблокирована. Если это произошло, то для разблокировки напишите сообщение в техническую поддержку ZONT.

Сим-карта МТС зарегистрирована на ООО "ЗОНТ-ОНЛАЙН" и занесена в реестр Госуслуг Все расчеты за использование Сим-карты МТС осуществляются сервисом ZONT из средств, вносимых Пользователем на счет своего Личного кабинета. Оплатить использование Сим-карты через банковские приложения НЕЛЬЗЯ. Переоформление Сим-карты МТС на физическое лицо, либо переход к другому оператору с сохранением номера технически НЕДОПУСТИМЫ.

В сервисе электронных платежей Юкасса осуществите оплату с вашей банковской карты:

Примечание: Рекомендуем не игнорировать подтверждение адреса электронной почты. Не подтвердив адрес вы не сможете получать оповещения от контроллера на E-mail и не сможете восстановить или изменить пароль в случае необходимости.

Примечание: Для ежемесячного автоматического пополнения баланса Сим-карты МТС включите функцию "Автоплатеж с баланса".

Примечание: Выбранный способ внесения денежных средств на баланс запоминается сервисом и в дальнейшем становится единственно возможным для данного Личного кабинета.

3. Настройка связи Контроллера с Сервером

Обмен данными и командами управления Контроллер и Сервер ZONT осуществляют с использованием сети Интернет. Основной способ связи через соединение по Wi-Fi или Ethernet. Резервный - передача мобильных данных по GSM. При выключении роутера или отключении доступа к Интернет, Контроллер автоматически переключается на резервный способ связи по GSM сети. При включении роутера и восстановлении доступа к Интернет происходит автоматический возврат на основной способ связи Wi-Fi или Ethernet

При отсутствии возможности обеспечить доступ в Интернет по Wi-Fi или Ethernet Контроллер может поддерживать связь с сервером ZONT только по GSM сети.

3.1 Подключение к мобильной сети GSM

Для этого способа подключения в устройство должна быть установлена активная Сим-карта.

Сим-карта устанавливается в специальный слот устройства до щелчка. Обратите внимание на допустимый размер Сим-карты и ориентацию контактной группы.

ВНИМАНИЕ: При первом включении устройства с новой Сим-картой установление связи с сервером может занять от нескольких минут до нескольких часов (зависит от алгоритма идентификации Сим-карты в сервисе МТС и не регулируется сервисом ZONT).

Подключите GSM антенну к Контроллеру проверьте уровень сигнала GSM. Это можно сделать по

зеленому индикатору на корпусе Контроллера и по индикатору уровня приема сигнала GSM в Личном кабинете сервиса. Выберите место установки антенны таким образом, чтобы уровень сигнала был максимальным. Для улучшения качество приема, можно вынести антенну дальше от Контроллера при помощи специального удлинителя (не входит в комплект поставки).

3.2 Подключение к локальной сети Ethernet

К локальной сети Интернет Контроллер можно подключить патч-кордом RJ45 к коммутатору или к роутеру. Дополнительные настройки при этом не требуются. Состояние подключения к локальной сети Ethernet отображает желтый индикатор на плате контроллера.

3.3 Подключение к сети Wi-Fi

Подключение к Wi-Fi сети можно выполнить 2-мя способами.

Если в Контроллер уже установлена активная Сим-карта и связь с сервером по GSM есть, то для подключения к сети Wi-Fi надо в общих настройках прибора указать название и пароль сети и сохранить введенные данные. Контроллер разорвет соединение с сервером по каналу GSM и установит соединение по сети Wi-Fi. При этом GSM канал связи будет в резерве.

A Ethernet	~
र Настройки Wi-Fi	~
Вводимые изменение пр голько тогда, когда приб связь (например, через	рименятся бор выйдет на GSM)
Настройки подключен Wi-Fi	ния к сети
 Для настройки W использовать Sm в мобильном при 	I-Fi удобно aartConfig ложении
Название сети	
TP-Link_8CFC	
Пароль сети	
	17

Если в Контроллере нет Сим-карты или по каким-то причинам она не планируется к установке, то подключение к сети Wi-Fi можно настроить через функцию **SmartConfig**:

- Подключить смартфон с Приложением ZONT к сети Wi-Fi (ОБЯЗАТЕЛЬНО 2.4 Ггц, другие не поддерживаются);
- Убедиться, что Приложению ZONT выдан доступ к Wi-Fi и геолокации;
- Убедиться, что включена служба геолокации.

Разместить смартфон в непосредственной близости от контроллера ZONT и в настройках подключения указать название сети и пароль. Затем нужно выключить и включить питание (основное и резервное) Контроллера ZONT и нажать кнопку "Передать настройки" – в течении 2-х минут подключение будет установлено.

ВНИМАНИЕ: Для успешного подключения надо уточнить какой диапазон рабочих частот у маршрутизатора – 2,4 ГГц или 5 ГГц и выбрать именно 2.4 ГГц, Если маршрутизатор двухдиапазонный, то при вводе данных указать пароль для точки доступа на 2,4 ГГц.

Маршрутизатор должен раздавать интернет в режиме "router" (режимы "мост"/"bridge" непригодны). В настройках маршрутизатора должен быть выбран код шифрования WPA2 и использование 2G BGN Tkip AES или без защиты.

4. Описание личного кабинета пользователя сервиса ZONT

4.1 Режимы отображения личного кабинета

Личный кабинет – это персональный аккаунт Пользователя в веб-сервисе ZONT. Доступ в личный кабинет возможен с любого устройства по логину и паролю. Личный кабинет веб-сервиса и мобильного приложения имеет идентичный функционал и разделен на три части:

- главное меню;
- верхнее меню;
- вкладки управления и контроля.

Левое меню содержит список всех устройств ZONT, зарегистрированных в аккаунте, отображает текущее состояние каждого и позволяет выбрать любое устройство для отображения полной информации о параметрах его работы. Верхнее меню содержит данные о напряжении питания, способе связи с сервером и уровне сигнала выбранного устройства. Вкладки управления и контроля используется для работы с выбранным устройством.

Информация в Личном кабинете имеет 2 режима отображения: **Пользовательский** и **Сервисный.** Первый предназначен для обзора состояния системы отопления, а второй предоставляет полную информацию. Переключение между режимами выполняется

럁

пользователем через нажатие соответствующей кнопки

Пользовательский режим Личного кабинета веб-сервиса:

Виталий sarlen 🔗	≕ 🌘 Дубровка 75			♥∡♥品 ‡
СИМ-КАРТЫ Ц КАРТА С СВОДКА С ПОИСК УСТРОЙСТВ	î.H î.H <td>14 🔹 ⊭ 🗲 🗔 аторы 2 таж Отопление Графики События Терминал таж</td> <td></td> <td>辈</td>	14 🔹 ⊭ 🗲 🗔 аторы 2 таж Отопление Графики События Терминал таж		辈
Н2000_PR0 На связи Дубровка 75 4 Ф. Н2000_PR0 На связи ▲ Образцово 42 4 Ф. Н2000_PR0 Авария 42000_PR0 Авария 42000_PR0 На связи 42000_PR0 На связи 4200_PR0 На связ	52.9° → 50° FBC		23.3° С 23.7° Пол гардероб	Пол холла
Шумейка Ф За Насвязи Бабушкин взвоз насвязи Бабушкин взвоз насвязи Бережная 83 Ф За	24.0° 🕞 🗅 23.6° Г Пол гостинной Пол пр	рачечная \bigcirc	24.6° С 25.3° Пол 1 спальня 2 эт Пол	© Сальня 2 эт
ниоц-ко на сеязи 4 ≪ & • Генеральское Перв 4 ≪ & +2000_РКО на сеязи 4 ≪ & +2000-РС Сработка датчика 4 • Сокол 4 ≪ 8 № & +2000-РКО на сеязи 4	24.7° О 37.6° (Пол 3 спальня 2 эт О 37.6°	(иаторы ключен	Столовая Отключен	Шрачечная Отключен
▲ Тополевка ▲ ж & Н1000_PRO Авария — ஆ	КОТЛОВЫЕ КОНТУРЫ			
Окумысная поляна 60 и ина н2000_RR0 Нена связи Пристанное Елена и № & управление устройством Опиддержка	61.0° → 15° Левый котел ↓ 48.0° → 15° Прави	ый котел		

Сервисный режим Личного кабинета веб-сервиса:

Мобильное приложение аналогично Личному кабинету веб-сервиса, только левое меню скрывается при выборе нужного устройства, а верхнее меню отображается в приложении снизу:

Пользовательский режим

Сервисный режим

ML.TD.ZH2000PRO.V2.001

Вернуться в содержание

4.2 Главное меню Личного кабинета

Главное меню (слева) открывается по клику на кнопку
 и содержит:
 z888958 – кнопку входа в блок настроек профиля личного кабинета;

- — кнопку вызова списка последних Важных событий личного кабинета (событий на всех контроллерах, которые зарегистрированы в этом личном кабинете);
- (сим-карты) (карта) кнопку перехода в меню настройки SIM-карт и перехода к карте с указанием местоположения контроллеров зарегистрированных в личном кабинете;
- Сводка кнопку входа в функцию группового контроля устройств выбранных для абонентского сопровождения (функция только для тарифа "Профи").
- С Поиск устройств... кнопку поиска устройств в списке по названию или по серийному

номеру;

- управление устройством кнопку входа в блок управления выбранным устройством;
- О ПОДДЕРЖКА КНОПКУ ВХОДА В БЛОК ОБРАТНОЙ СВЯЗИ С ТЕХНИЧЕСКОЙ ПОДДЕРЖКОЙ производителя оборудования, справочным материалам и технической документации.

В списке устройств, зарегистрированных в Личном кабинете, отображаются их названия, типы (модели) и индикаторы текущего состояния:

- 🔍 или 🔾 индикатор наличия связи с сервером;
- 🛛 🕰 индикатор аварии котла;
- ((•)) индикатор включенных охранных функций;
- Л 🕅 🖧 индикаторы каналов связи с сервером, доступные для выбранного устройства. При отсутствии связи с сервером 🖉 🖤 🖧 индикаторы не активны:

индикатор сигнала GSM

- высокий уровень,
- средний уровень
- 🖉 низкий уровены
- 💐 отсутствует или SIM-карта неисправна
- заканчивается оплаченный период действия SIM-карты (пополнить)
- закончился оплаченный период действия SIM-карты;

индикатор WiFi связи

- высокий уровень сигнала
- нормальный уровень сигнала

Ѷ – отсутствует сигнал сети WiFi

🔊 – WiFi не настроен на Контроллере (отсутствует логин и/или пароль);

индикатор Ethernet связи

💑 – подключение по Ethernet есть

🔹 🛋 – индикатор совместного доступа к управлению Контроллером

上 – Контроллер зарегистрирован в данном личном кабинете

Контроллер зарегистрирован в другом личном кабинете, а здесь доступен через функцию "Совместный доступ".

• или • индикатор состояния охранной зоны. Если в Контроллере активна функция "Охрана" и настроена хотя бы одна охранная зона, то вместо индикатора наличия связи с сервером будет показано состояние охранной зоны.

4.3 Верхнее меню Личного кабинета

Верхнее меню отображает вкладки контроля и управления выбранным устройством.

Справа вверху отображается индикация питания Контроллера 🖤 – от сети, или 🗗 – от резервного АКБ, а также индикация наличия существующих у Контроллера каналов связи и их текущее состояние 🕢 🕅 🔠 . При клике на каждый из индикаторов открывается окно со справочной информацией по каждому индикатору.

настройкам возможен только в Сервисном режиме.

Примечание: Кнопка входа в настройки 🤷 присутствует и на других панелях устройств и датчиков и позволяет перейти в блок настроек из любого места личного кабинета.

По центру вверху (в веб-сервисе) или внизу (в мобильном приложении) располагаются вкладки контроля и управления работой Контроллера.

Основные вкладки (Отопление, Графики, События, Камеры), включены по умолчанию.

Пользовательские вкладки (названия их индивидуальные) создаются Пользователем.

ţ ļ	ţ <u></u> ţ	ţ <u>i</u> ţ	ţ.	THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER	~	4	\bigcirc
Полы 1 Этаж	Полы 2 Этаж	Радиаторы 1 Этаж	Радиаторы 2 Этаж	Отопление	Графики	События	Камеры

Кнопка сервисного режима 🔧 вызывает меню со следующими функциями:

Сервисный режим открывает доступ к полным настройкам Контроллера. Выключение сервисного режима

оставляет только пользовательские функции. Доступ в сервисный режим можно закрыть индивидуальным паролем (по умолчанию admin)

Режим конструктора разрешает менять отображаемые окна и параметры вкладок контроля и управления:

- изменение размера элементов и соответственно размеров шрифта на экране;

🔕 – выключение видимости не нужных панелей контуров и датчиков;

Сортировка (изменение последовательности выкладки) разделов и

элементов в разделе осуществляется захватом и переносом значка 💻. Перенос панелей контуров и датчиков осуществляется захватом панели и перемещением в нужно место.

Примечание: После работы в режиме Конструктора необходимо сохранить сделанные изменения кнопкой в правом нижнем углу экрана.

Упрощенный вид – включает отображение вкладок контроля и управления Контроллером в ограниченном виде, более удобном для использования в Мобильном приложении.

4.4 Вкладка "ОТОПЛЕНИЕ"

Основная рабочая вкладка, отображающая конфигурацию Контроллера и используемая для контроля котловых и отопительных контуров системы отопления, управления отопительными и котловыми режимами, контроля состояния датчиков и управления дополнительным оборудованием.

4.4.1 Котловые контуры

Блок группирует основные данные о работе источников тепла. Описание отображаемых параметров зависит от способа подключения к котлу – релейное или по цифровой шине:

- Котел название, указанное пользователем в настройке котлового контура, может быть дополнено индивидуальной иконкой, выбираемой из предлагаемых сервисом.
 - 🚽 🕐 индикатор состояния горелки котла, управляемого цифровым способом:
 - 🔿 горелка включена, 🔿 горелка выключена;

- С индикатор состояния выхода Контроллера, при релейном управлении котлом:
- Состояние котла, который может работать по запросу, быть отключен, или находиться в состоянии аварии;
- Сейчас фактическая температура теплоносителя в котле;
- Расчетная расчетная температура теплоносителя, задаваемая алгоритмом управления;
- Адаптер цифровой шины или исполнительное устройство, управляющее котлом. Это может быть адаптер цифровой шины (при цифровом управлении), либо реле, при релейном управлении.

Ниже может быть расположено название датчика по которому контролируется температура теплоносителя. Название этого датчика отображается в том случае, если для регулирования не используются данные о температуре теплоносителя из цифровой шины котла.

При клике по панели контура открывается окно с рабочими параметрами котла, полученными из цифровой шины. При релейном управлении параметры котла недоступны.

Стат	ус	Контроль насоса	Поддерживается
Авари	и нет	Конфигурация ГВС	Не Проточное
топление	Неактивно	Отопл	ение
контур отопления	Неактивно	Фактическая t° теплоносителя	26.2°C
ВС)хлаждение	Неактивно	Расчётная t° теплоносителя	20°C
орелка	Неактивна	ГВ	с
циагностическое ообщение	Нет	Расчётная t° ГВС	43°C
DODAHL		Фактическая t° ГВС	26.3°C
иодуляции	0%	Границы t° ГВС	35 — 43°C
Конфигура	ция котла	Про	чее

4.4.2 Отопительные контуры

Блок группирует основные данные о работе контуров Отопления.

Описание отображаемых параметров и статусов приведено на примерах различных контуров.

- Название контура указанное пользователем при настройке контура, может быть дополнено индивидуальной иконкой, выбираемой из предлагаемых сервисом. Ш, 🖏;
- Сейчас фактическая температура датчика по которому производится регулирование;
- /// индикатор наличия "запроса на тепло" к котловому контуру. Отображается при необходимости нагрева теплоносителя в контуре для компенсации возникающих теплопотерь;
- Индикаторы способа терморегулирования:
 - 🧖 по воздуху,
 - 🕓 по теплоносителю,
 - ি ПИД регулирование, 🖄
 - погодозависимое регулирование (ПЗА);
- Целевая или Отключен целевая температура контура или его состояние в текущем режиме отопления;
- 🔷 42.0° фактическая температура теплоносителя в контуре;
- → 20° "запрос на тепло" к отопительному контуру (котлу/каскаду), для нагрева теплоносителя до значения, рассчитанного Контроллером как оптимального в данном контуре отопления;
- 🏵 индикатор насоса, используемого в качестве исполнительного устройства в данном контуре. При работе присутствует анимация вращения лопастей.
- м индикатор привода смесителя, используемого в качестве исполнительного устройства в данном контуре. При постоянном положении привода индикатор серый. При закрывании м синий и мигает. При закрытом состоянии синий. При открывании м красный и мигает. При открытом состоянии красный.
- 1эт.гостевая _{или} Адаптер ВАХІ _{источник} информации о фактической температуре по которой производится регулирование в данном контуре (датчик или адаптер цифровой шины);
- + кнопки ручного изменения целевой температуры в контуре

Окантовка отопительного контура имеет цвет режима отопления, действующего в настоящий момент в этом контуре. При изменении целевой температуры в ручном режиме, окантовка контура не имеет цвета.

При клике по панели отопительного контура открывается его детальное описание. Данные всех

отопительных контуров можно просматривать по очереди, используя стрелки Ň

		ОТОПЛЕНИЕ по 1	ГЕПЛОНОСИТЕЛЮ		×	
Сейчас: 54.8°			Состояние			
			Запрос тепла	Активно	<u></u>	
			Режим отопления	КОМФОРТ	0	
Снижение t до:			Способ управления	по ТН	٥	
	50.2°		Температура теплоносителя			
JU.2	~ °	Целевая t°	50.2°			
54.8		3°	Расчетная t°	50.2°		
10°	•	72°	Целевой датчик	BOSCH 6000		
			Текущая t°	54.8°		
	- +					
	Δ 54 8° → 50 2°					
6	() 0 / 00.2					
комфорт	ЗИМА	МАКСИМУМ	🔅 НАСТРО	ОЙКИ КОНТУРА		

Дополнительно к описанным выше параметрам и индикаторам в детальном описании контура отображаются:

- шкала ручного изменения целевой температуры. Для выбора нового значения нужно кликнуть по движку — и потянуть движок вправо или влево. Границы диапазона задаваемых значений целевой температуры, в пределах которых она может быть установлена, определяются настройкой верхней и нижней границы датчика температуры по которому производится регулирование;
- Комоорт Зима максимум кнопки выбора режима отопления для применения в настраиваемом контуре. Изменение режима в отдельном контуре не меняет режимы отопления других контуров.

4.4.3 Отопительные режимы

Блок группирует кнопки включения предустановленных режимов работы отопительных контуров.

 Сомфорт Сомфорт Сомфорт 	юм	Расписание	() Выключен	\$

Комфорт, Эконом и пр. – произвольное название режимов отопления, заданное при настройке Контроллера. В настройках режимов можно выбрать иконку для отображения рядом с названием режима режима . Цвет клавиши режима можно выбрать из предложенных вариантов.

Примечание: В цвет активного режима окрашены окантовки панелей отопительных контуров работающих в этом же режиме. Не активные режимы не окрашены.

4.4.4 Температура

Блок отображает данные о температуре теплоносителя и воздуха от всех датчиков и прочих источников. Клик по иконке датчика вызывает справку с его параметрами. При отклонении температуры за пороговые значения, иконка датчика окрашивается в красный цвет и отображается порог, за который вышла фактическая температура.

4.4.5 Датчики

Блок группирует показания всех контролируемых Контроллером датчиков. Клик по иконке датчика вызывает справку с его текущим состоянием и заданными пороговыми значениями. Цвет индикатора соответствует цвету датчика, выбранному для отображения на графиках.

При выходе измеряемого датчиком параметра за пороговые значения иконка датчика окрашивается в красный цвет и отображается порог, за который вышел измеряемый параметр.

При срабатывании датчика иконка датчика окрашивается в красный цвет и отображается граница за которую вышел измеряемый параметр.

4.4.6 Управление и Статус

Блок отображает "Элементы управления" исполнительными устройствами, подключенными к выходам Контроллера и "Статусы" состояния этих выходов. Клик по иконке "Элемента управления" включает или выключает исполнительное устройство.

4.4.7 Индикация отказа датчика температуры в контуре

При отсутствии данных от датчика температуры, по которому производится регулирование в контуре, вместо значения температуры будет отображаться прочерк

4.4.8 Индикация аварии котла и прочих важных событий

При возникновении аварии котла или ошибке в параметрах котлового контура появляется сообщение об аварии и поле котлового контура окрашивается в красный цвет.

В окне детальной информации контура котла появляется код ошибки, который передает котел по цифровой шине, возможная причина ошибки и метод ее устранения.

	Котел	×				
Нет связи с адаптером Показано последнее известное состояние Статус						
Отопление		Активно				
2 контур от	гопления	Активно				
ГВС		Активно				
Охлаждени	1e	Активно				
Горелка		Активна				
Диагности сообщение	ческое	Есть				
	Отопление					
Desträtting	+0 7000000000000000	7000				
0		0				

Сообщение об ошибке появляется в журнале событий Контроллера и в списке важных событий личного кабинета. В верхней части экрана высвечивается предупреждение, которое будет активно до того момента пока не будет устранена ошибка на котле. Рядом с названием Контроллера появится значок предупреждения об аварии , который также появится в виджете на смартфоне, если виджеты включены в настройках мобильного приложения.

4.5 Вкладка "ГРАФИКИ"

Вкладка "Графики" – основной инструмент контроля работы каждого контура системы отопления. По графикам можно очень точно контролировать динамику работы системы отопления, изменение

УПРАВЛЕНИЕ И СТАТУС Бойлер баня Ċ. БОЙЛЕР ВЫКЛЮЧЕН

ГВС		\$
Сейчас		٥
Целевая 55°		S
→ 55°		
Котел		
-	+	

параметров ее работы, состояния входов и выходов Контроллера, мониторить температуру, напряжение питания, качество радиосигналов и GSM-связи.

Графики можно отражать на различных временных отрезках: за текущие сутки "Сегодня", прошедшие сутки "Вчера" или за произвольно выбранный отрезок времени "Период".

Справа вверху отображаются кнопки управления графиками:

- 🕀 добавление нового графика;
- 🕑 прокрутка (смена) графиков с помощью "мышки" или Ü изменение их масштаба;
- выбор конкретного графика для увеличения масштаба шкалы времени:
 - 🗘 выбраны все графики;
 - 🕅 выбран график на котором будет увеличиваться масштаб времени, при этом все остальные графики останутся в том же масштабе. Эта функция позволяет сократить время вывода на экран измененного графика в том случае если используется много графиков.
- 📕 отправка на печать всех графиков.

Для каждого графика доступно:

- 🐨 изменение последовательности выкладки графиков (перемещение вверх и вниз);
- 🔲 удаление графика;
- -
- 🛛 🐸 разворот графика на весь экран;
- *р*едактирование (изменение набора) отображаемых параметров. В режиме редактирования появляется всплывающее меню со всеми доступными параметрами. В этом же меню можно изменить цвет линии любого параметра на графике;
- Выберите графики × BOSCH 6000 🔲 расчётная t° Т V t° TH t° FBC 🔲 t° обратного п 🔲 t° снаружи 🗸 уровень модул В НАСТРОЕК применить 🔲 давление тепл скорость потока ГВС Отопление активно
- 🥑 кнопка выбора цвета линии графика для выбранного параметра.

Примечание: При перемещении курсора по графику на нем отображается время, соответствующее позиции курсора, а в легенде (поле под графиком) значения всех параметров в этот момент времени.

Примечание: При наведении курсора на название параметра в легенде, выделяется график только этого параметра, а остальные отображаются фоном. Двойной клик на параметре меняет единицы измерения шкалы Y на единицы соответствующие этому параметру. Например, если на графике изображены влажность и температура и шкала Y была проградуирована в градусах, то при двойном клике по названию параметра влажности единицы измерения шкалы Y поменяются с градусов на проценты.

4.6 Вкладка "СОБЫТИЯ"

Представляет собой журнал, в котором отображены все фиксируемые Контроллером события за выбранный отрезок времени: "Сегодня", "Вчера", "Период". Период времени на вкладках "Графики" или "События" синхронизирован. При изменении на одной вкладке период меняется и на другой.

События можно отфильтровать с помощью «Фильтра событий», выбрав или целые типовые группы или выборочно указав только необходимые из разных групп.

Сервер ZONT бесплатного хранит архив всех данных о работе Контроллера и системы отопления: событий, параметров работы и графиков в течении 3-х месяцев.

Существует возможность платного расширения срока хранения архива данных. Подробнее на сайте <u>https://zont.online/</u> в разделе "Сервис и тарифы".

4.7 Вкладка "КАМЕРЫ"

Вкладка предназначенная для просмотра видео с IP-камер, поддерживающих передачу данных по потоковому протоколу RTSP. Эта функция непосредственно сервиса ZONT и не требует физического подключения камер к Контроллеру. Подробная информация размещена в Библиотеке ZONT, раздел "Видеонаблюдение".

4.8 Вкладка "ОХРАНА"

Вкладка для контроля состояния охранных и информационных датчиков подключенных к входам Контроллера и управления режимом охраны.

↑	ţţţ	ţţţ	U	1	~	4	\bigcirc		🔳 🧰 дом	우 교우로 수
ДОМ ОТОПЛЕНИЕ	СЕТЬ	ПОГРЕБ	Охрана	Отопление	Графики	События	Камеры		ОХРАНА	*
OXPAHA								4	Охранная зон	ia 🌣
Охранная зон	a 🏟						СНЯТЬ С ОХРАНЫ		снять	С ОХРАНЫ
									П	۵
СМК 👰									СМК	P

Подробнее в Части 2 настоящей Документации, Раздел 20. Функции охранной сигнализации.

5. Блок настройки конфигурации Контроллера

Настроечные параметры Контроллера сгруппированы в пять основных блоков:

- Обшие: •
- Отопление; •
- Управление;
- Радиоустройства;
- Охрана.

В Личном кабинете веб-сервиса предусмотрено два уровня доступа к набору настроек:

- режим пользователя без возможности настройки алгоритма управления отоплением;
- сервисный режим полный доступ к изменениям алгоритмов управления и обновлению • ΠО.

Вход в Сервисный режим предоставляется по паролю, который устанавливается при первичной настройке контроллера. По умолчанию изготовителем задан пароль admin. Включение и выключение Сервисного режима выполняется виртуальным переключателем в нижнем левом углу

меню настроек в веб-интерфейсе и кнопкой 🔧 в мобильном приложении в правом верхнем углу.

÷		ДОМ - 18:10 Общие настройки		× <	ДОМ - 18:16	▲ ×
	Настройки 🔤	Устройство		Q	Поиск 🔧 Сервисный режим	•
Q	Поиск	Название	Часовой пояс		© Z3KContgReader	
	Общее	дом	UTC+4 — Самара, Удмуртия	• (0>>	Общие настрої ки	>
()))	Общие настройки	Сервисный пароль 🕥	Местоположение устройства 🕥	:	Совместный доступ	>
	Совместный доступ	admin	Ш: 53.47018, Д: 49.83603		Пользователи	>
# <u>_</u>	Пользователи	🛔 Ethernet подкл	ючен, 192.168.1.52	, U) Оповещения	>
!!)	Оповещения	🗢 Настройки Wi-Fi Derevr	Настлойки Wi-Fi Derevnya			>
¢	Сервис	JI Настройки GSM				>
@i	Настройки интерфейса	M Уведомления по E-Mail Отклк	рчены	~	73K Config	
	Z3K_Config	Имя локальной подсети Не исп	пользуется	~ -	Отопление	
1000	Отопление	Устройство		0000	ј Отопление	>
	Режимы отопления	Модель H2000 PRO	Модель платы 710		Э Режимы отопления	>
	Датчики техпературы	Серийный №	Версия прошивки) Датчики температуры	>
°	Исполнительные устройства	BEAAE483DC88	295	****	Исполнительные устройства	>
())	Управление	ID 333526 ष			Управление	
•	Сервисный режим		СОХРАНИТЕ	• •		

Настройка Контроллера разделена на тематические блоки. Назначение каждого блока и описание настраиваемых в нем функций и параметров можно получить, используя встроенные подсказки, помеченные знаком вопроса ②.

Цифровь	іе датчики температуры ⑦	<ДОМ - 18:27 Датчики температуры 🔌 🗙
улица	Проводные датчики температуры обнаруживаются сразу после	Цифровые датчики температуры ®
MAXIM DS18s20	подключения. Поддерживаются датчики типа DS18S20 и DS18B20.	Проводные датчики температуры обнаруживаются сразу после полключения. Поллепживаются
БАНЯ	Неоригинальные датчики могут не работать.	атчики типа DS18S20 и DS18B20. Неоригинальные датчики могут не работать.
		еок

5.1 Блок настроек "Общее"

5.1.1 Общие настройки

Блок содержит название объекта управления, часовой пояс, в котором объект фактически располагается, сервисный пароль входа в настройки Контроллера, точку фактического расположения объекта управления на карте. Здесь же расположены настроечные параметры способов обмена данными (связи) Контроллера с сервером ZONT, а также идентификационные данные прибора: Модель, Серийный номер, Версия ПО и ID устройства.

	Настройки	=<	Устройство	< ДОМ - 19:03 Общие настройки 🔍 🗙
Q	Поиск		Название ДОМ	Устройство Название
(0) (<0)	Общие настройки		Часовой пояс UTC+4 – Самара, Удмуртия -	ДОМ
***	Совместный доступ		Сервисный пароль 💿	Часовой пояс
* _%	Пользователи		admin	

	Настройки ≕	Vernečere	<	ДОМ - 19:06 Общие настройки	∢ ×
Q	Поиск	устроиство Модель	Модель H2000_PI	20	
(0) (<0)	Общие настройки	H2000_PRO Модель платы	Модель г 710	ілаты	
:**	Совместный доступ	710 Серийный №	Серийны ВЕААЕ48	й№ 3DC88 盾	
* _%	Пользователи	BEAAE483DC88 🚡			

Название определяет как Контроллер отображается в списке устройств личного кабинета.

Часовой пояс определяет время, по которому Контроллер выполняет управление.

Сервисный пароль (по умолчанию admin) разрешает доступ Пользователя к полным настройкам и полным правам управления Контроллером. Если пароль не менялся Пользователем, то доступ к настройкам свободный и ввод сервисного пароля не требуется.

Местоположение требуется для поиска объекта на карте и использования данных о температуре улицы с метео сайта. Для ввода нужно указать точку на карте.

	Настройки 🖃	Land сами сами сами сами сами сами сами сами	~	ДОМ - 19:06 Общие настройки	∢ ×
		🗢 Настройки Wi-Fi Derevnya	~	🛃 Ethernet	~
	Поиск	II Настройки GSM	~	奈 Настройки Wi-Fi	~
() () () () () () () () () () () () () (Общее	Уведомления по Е- Отключены Mail	~	, Настройки GSM	~
	Совместный доступ	😩 Имя локальной Не используется	~	🗹 Уведомления по E-Mail	~

Подробнее в Части 1 Раздел 3 Настройка связи Контроллера с Сервером

5.1.2 Настройка уведомлений по E-mail и Push

Настройка автоматических уведомлений Владельца аккаунта о контролируемых событиях выполняется в два действия:

🗹 Уведомления 🔨	Уведомления Отключены
Способ	Способ
✔ E-Mail ⑦ Ha agpec StrahovHome@yandex.ru	E-Mail ③
✔ Push ⑦	
Уведомлять	Уведомлять о
🗌 о важных событиях	о тревожных событиях 💿
об отсутствии связи между прибором и сервером	об отсутствии связи Время отсутствия связи, после которого отправляется
	уведомление
Время отсутствия связи, после которого	

• Настройка «Способ» определяет, как доставляются уведомления

E-Mail – уведомления поступают на э/почту, указанную при регистрации аккаунта Push – уведомления поступают в виде всплывающих push-сообщений на мобильном устройстве владельца аккаунта, при условии «разрешения push» для Приложения ZONT

• Настройка «Уведомлять» определяет, будут уведомления отправлены или нет

О важных событиях – по умолчанию определен список важных событий (аварии, высокие температуры, отсутствие обмена с ЦШ котла и т.п.).

Об отсутствии связи прибора с сервером ZONT – уведомление будет отправлено в случае превышения заданного тайм-аута контроля

Таким образом **Уведомлений нет**, когда не заданы контролируемые события, **и уведомления есть** когда они заданы

Уведомлять о		Уведомлять о	
🔲 о тревожных событиях	0	🗹 о тревожных событиях	0
🔲 об отсутствии связи		🗹 об отсутствии связи	

Способ доставки уведомлений при этом определяет выбор

Способ	
🗹 E-Mail 💿	V Push 🧿
Ha aдрес szhome@mail.ru	

5.1.3 Совместный доступ

Настройкой Контроллера предусмотрено разрешение доступа в аккаунт (личный кабинет) Владельца пользователю из другого аккаунта сервиса zont-online.

Обычно совместный доступ предоставляется сервисному инженеру для работ по сопровождению объекта и дистанционной диагностики состояния автоматики и системы отопления.

Для разрешения совместного доступа нажмите кнопку "Добавить разрешение" и укажите аккаунт (логин) того, кому этот доступ предоставляете.

Совместный доступ может быть предоставлен с ограничение полномочий, с разными способами оповещений о событиях и с возможностью ретрансляции доступа третьим лицам.

Страхов А.А 10:23	• •	Страхов А.А 10:24	
Главная • Совместный доступ		Главная • Совместный доступ	
Владелец		+ ДОБАВИТЬ РАЗРЕШЕНИ	E
z445197 (вы)		azrail_baysarov	/ 1
Приватные записи		Полномочия	
		Просмотр текущего состояния	\bigcirc
Персональные записи до	ступны в	Просмотр сохранённых данных	?
		Push уведомления	0
ПЕРЕЙТИ		Управление	0
		Показывать настройки	2
риватное название устройства ᠀		Осуществлять настройку	0
Страхов А.А.		Прошивка	0
Общее название: Страхов А.А.		Расширенная настройка	0
		GWD	/
Другие пользовател	И	Полномочия	
	-	Просмотр текущего состояния	?
		Просмотр сохранённых данных	0
		Push уведомления	0
azrail baysaroy	/ i	E-Mail уведомления	0
azian_bayoarov		Управление	(?)
Полномочия		Показывать настройки	0
	0	Осуществлять настройку	(?)
Просмотр текущего состояния	0	Прошивка	(?)
просмотр сохраненных данных	Ŷ	Расширенная настроика	(?)
Push ураломлания	0		
Push уведомления Управление	0	Расширение совместного доступа	0

Автоматическое уведомление о контролируемых Контроллером событиях для пользователя находящегося в совместном доступе настраивает Владелец аккаунта, где зарегистрирован прибор.

По умолчанию все уведомления активированы. Если есть необходимость отменить отправку уведомлений, Владелец аккаунта корректирует способы уведомлений через правку, полномочий доступа:

GWD	A =	Логин пользователя GWD
Полномочия		О Тех.поддержка ⊘
Просмотр текущего состояния	0	Полномочия
Просмотр сохранённых данных	?	Просмотр текушего состояния (?)
Push уведомления	?	
E-Mail уведомления	?	🗹 Просмотр сохранённых данных 🕜
Управление	?	Ризруженом пения (2)
Показывать настройки	?	• чазпуведомления
Осуществлять настройку	?	Е-Маіl уведомления ⑦
Прошивка	?	П Управление 💿
Расширенная настройка	0	

5.1.4 Пользователи

Вкладка предназначена для ввода данных владельца контроллера и его доверенных лиц, а также распределения их ролей по контролю и управлению Контроллером через SMS-команды.

	Совместный доступ	Пользователи 🗇	<	ДОМ - 13:37 Пользователи	ع	
# <u>_</u> *	Пользователи	≡ хозяин		Пользователи 🕐		
!!)	Оповещения	Е НАТАША	x	озяин		i.
21	Настройки интерфейса	Пользовательские роли 💿	н	АТАША		ĩ
	Z3K_Config	ПОЛНОЕ УПРАВЛЕНИЕ		Пользовательские роли 🕅		
				Пользовательские роли (?)	-	

<i></i>	Пользователи 🕐	Имя 💿	Пароль для управления с другого телефонного номера	< ДОМ - 12:22
# <u>_</u>	хозяин 📋	ХОЗЯИН	···· @	Имя 💿
!!)	= НАТАША 📋	Список телефонов		ХОЗЯИН
\$	+ добавить	+7 (222) 222-22-22		Пароль для управления с другого телефонного номера
370				Ø

Примечание: Рекомендуем использовать пароль, т.к. в некоторых случаях он может помочь дистанционно перезагрузить контроллер SMS-командой при отсутствии интернет соединения с сервером.

5.1.5 Сервис

Примечание: Вкладка Сервис доступна только при активном " Сервисном режиме".

Вкладка содержит служебную информацию о Контроллере. Здесь размещены кнопки для перезагрузки контроллера, загрузки и выгрузке файла конфигурации, запуска автоматического и ручного обновления версии прошивки Контроллера.

Также на данной вкладке размещены данные о техническом обслуживании системы отопления, в которой применен Контроллер, и отображается служебная информация о блоках расширения и внешних панелях управления, к нему подключенных.

	Общее	Конфигурация устройства	
() (<0)	Общие настройки	Обслуживание устройства	
	Совместный доступ	Устройства расширения 📀	
* _%	Пользователи	= ZE84E ОТОПЛЕНИЕ	Î
!!)	Оповещения	ZE88-1 инженерные системы в доме	Î
¢	Сервис	ZE88-2 Инженерные системы в доме	Î
@i	Настройки интерфейса	ZE66E ВХОДНАЯ ЗОНА	Î

~	ДОМ - 13:41 Сервис	•	×
	Конфигурация устройства		
	Обслуживание устройства		
	Устройства расширения 🕅		
	ZE84E ОТОПЛЕНИЕ		ŧ.
	ZE88-1 инженерные системы в доме		•

Подробнее в Части 1 Раздел 6. Служебные команды и настройки

5.1.6 Настройки интерфейса

Вкладка управления отображением визуализации работы исполнительных устройств в панелях котловых и отопительных контуров, а также выборочного отключения отображения вкладок на главном экране.

Настройки ≕		< Дубровка 75 - 16:11 4 × Настройки интерфейса
இі Настройки интерфейса	Интерфейс отопления	Интерфейс отопления
Z3K_Config	Системные вкладки	Системные вкладки
Отопление		

Подробнее в Части 2, Раздел 5.3.4 Интерфейс пользователя.

5.2 Блок настроек "Отопление"

Содержит вкладки предназначенные для составления конфигурационного файла Контроллера по решению задач контроля и управления работой системы отопления.

5.2.1 Отопление

Вкладка конфигурирования котловых и отопительных контуров системы отопления, где каждому контуру задаются управляющие датчики, диапазоны рабочих температур, исполнительные устройства для управления котлами и регулирования теплоносителя.

	Отопление	Система отопления 🗇		< ДОМ - 15:29 < ▲ × Отопление <
10000	Отопление	≡ КОНТУР КОТЛА BOSCH 6000		Система отопления
	Режимы отопления	🗉 ОТОПЛЕНИЕ РАДИАТОРЫ	Ξ.	КОНТУР КОТЛА BOSCH 6000
	Датчики температуры	= ГОРЯЧАЯ ВОДА	=	ОТОПЛЕНИЕ РАДИАТОРЫ

Подробнее в Части 2. Раздел 11.1 Котловые и Отопительные контуры.

5.2.2 Режимы отопления

Вкладка конфигурирования различных по задачам режимов отопления.

	Отопление	Режимы отопления 🗇	< ДОМ - 15:34 • • • • • • • • • • • • • • • • • • •
1000	Отопление	Е КОМФОРТ	Режимы отопления
	Режимы отопления	≡ ЗИМА	КОМФОРТ
٨	Датчики температуры	= МАКСИМУМ	ЗИМА

В Режим отопления включаются отопительные контуры (Потребителя и ГВС), где каждому задается целевая температура или вариант работы. Контур может не входить в состав некоторых режимов. В этом случае при включении режима, где контур не указан, сохраняется ранее заданный ему вариант работы (целевая температура).

1000	Режимы отопления @	Настройки отопительных контуров 🕲		< ДОМ - 15:56 Режимы отопления • Комфорт 🔦 🗙		
0000				Настройки отопительных контуров @		
	= КОМФОРТ	ОТОПЛЕНИЕ РАДИАТОРЫ	~			
		ГОРЯЧАЯ ВОЛА	~	ОТОПЛЕНИЕ РАДИАТОРЫ 🗸		
	≡ ЗИМА	l of h hor body.				
				ГОРЯЧАЯ ВОДА 🗸 🗸		
5		ОТОПЛЕНИЕ РАДИАТОРЫ ПРОВА	~			
율				ОТОПЛЕНИЕ РАДИАТОРЫ ПРОБА 🗸		
		ОТОПЛЕНИЕ РАДИАТОРЫ ПО ВОЗДУХУ	\sim			

10000	Режимы отопления @	ОТОПЛЕНИЕ РАДИАТОРЫ	^	< ДОМ - 15:56 <
0000		Контур отопления	Вариант работы	Настройки отопительных контуров (?)
	КОМФОРТ	отопление радиаторы	Фиксированная температура 🔺	
٢	≡ ЗИМА	Фиксированная температура	Отключено	отопление радиаторы
		45 °C	Фиксированная температура	
ਵਿੱਚ	= МАКСИМУМ		Дневное расписание	Контур отопления 🕜
((_R))	Котловые режимы 🗇	ГОРЯЧАЯ ВОДА	Недельное расписание	ОТОПЛЕНИЕ РАДИАТОРЫ
e e	Нет доступных элементов	ОТОПЛЕНИЕ РАДИАТОРЫ ПРОБА	Интервальное расписание	Вариант работы

Вариант работы по расписанию предполагает настройку:

- дневного расписания;
- недельного расписания;
- интервального расписания.

Контур отопления	?	Вариант работы	?
ОТОПЛЕНИЕ РАДИАТОРЫ	•	Дневное расписание	•
○ Температура: 20 °С - 01°° 03°° 05°° 07°° 09°° 11°° 13°	● Реж [№] 1,5 ⁰⁰	КИМ: КОМФОРТ V 1,700 1900 2100 2300	
18 °C ΚΟΜΦC 20 °C	2	КОМФОРТ 20	
Регулирующий датчик	?		
Использовать датчик назнач	•		

Дневное расписание

Целевая температура или целевой режим отопления в дневном расписании задаются с шагом не менее одного часа. Созданное таким образом расписание будет повторяться каждый день.

Недельное расписание

Целевая температура или целевой режим отопления в недельном расписании задаются с шагом не менее одного часа. Созданное таким образом расписание будет повторяться каждую неделю.

Интервальное расписание

Целевая температура или целевой режим отопления в интервальном расписании задаются с шагом не менее одной минуты. Доступно создание нескольких временных интервалов. Вне созданных интервалов задается или общий режим отопления или целевая температура, которые будут выполняться Контроллером.

ВНИМАНИЕ!!! Нельзя допускать пересечения разных интервалов

Кнопки "Отопительных режимов" имеют свой цвет и при включении любого из них, рамка панели отопительного контура, указанного во включаемом режиме, окрашивается в соответствующий цвет.

Примечание: Рекомендуется включать в каждый "Отопительный режим" все отопительные контуры из конфигурации Контроллера. В этом случае, переключая режимы, пользователь гарантированно изменит задание в каждом контуре. Если этого не сделать и не указать контур в режиме, то в таком контуре сохранится прежнее задание.

Для "Котловых режимов" рекомендация указывать все котлы из конфигурации Контроллера является обязательной, т.к. в противном случае логика управления будет нарушена.

5.2.3 Датчики температуры

Вкладка содержит три группы настроек для различных типов датчиков температуры: цифровых, аналоговых и радиодатчиков.

# _\$	Пользователи				Датчики температуры		
		цифровые датчики температу			Цифровые датчики температуры 🕐		
	Оповещения	≡ Улица	20.8° 📋				
Ê	Сервис				≡ Улица	20.8° 🔳	
		≣ Подачж	24.1°		≡ Подачж	24.1° 📋	
	Настроики интерфеиса	t котельной	23.4° 📋			-	
=	Z3K_Config				≡ t котельной	23.4° 📋	
	07000000	+ ДОБАВИТЬ				DIATE	
	Отопление		(DLL @		T doba	5MT5	
1000	Отопление	Аналоговые датчики температу	иры ()		Аналоговые датчики	и температуры 🕅	
	Режимы отопления	Нет доступных элементов			Нет доступных	элементов	
	Г сжимы отопления	+ ДОБАВИТЬ			, in good, in the		
	Датчики температуры				+ ДОБА	ВИТЬ	
0,7,0	Исполнительные устройства	Радиодатчики 868 МГц 📀			Ралиолатчики	868 MFu ⑦	
1 C		=	🗟 🗍 нет связи 🗐				
	Управление				≡ Дом	🛜 🗋 Нет связи 📋	

Подробнее в Части 2, Раздел 6. Датчики температуры.

5.2.4 Исполнительные устройства

Вкладка настройки выходов Контроллера для управления исполнительными устройствами, осуществляющими регулирование температуры теплоносителя в отопительных контурах и управление источниками тепла (котлами).

	Отопление	Адаптеры котлов 💿	<ДОМ - 14:23 <
10000	Отопление	BOSCH 6000	Адаптеры котлов 💿
Ø	Режимы отопления	+ добавить	BOSCH 6000
٢	Датчики температуры	Релейное управление 🗇	+ добавить
°.?.° °.∕° ⊔	Исполнительные устройства	Нет доступных элементов	Релейное управление @
	Управление	+ ДОБАВИТЬ	Нет доступных элементов
()	Датчики	Насосы ⑦	+ добавить
) ∕v⇒	Действия с выходами	Нет доступных элементов	
F	Элементы управления	+ ДОБАВИТЬ	
0 III0 ec	Интерфейс пользователя	Краны смесителей 🗇	

Подробнее в Части 2 Раздел 15 Исполнительные устройства для контуров отопления и ГВС.

5.3 Блок настроек "Управление"

Содержит вкладки настроек выходов Контроллера для управления дополнительными электроприборами, вкладки настроек входов Контроллера для контроля подключенных к ним датчиков, а также содержит прочие функции, связанные с задачами не касающимися алгоритмов работы котловых и отопительных контуров.

5.3.1 Датчики

Вкладка для настройки функций Контроллера по контролю аналоговых входов и определения события срабатывания или изменения состояния подключенных к ним датчиков или электрических приборов.

	Управление		Датчики ⊘		8	<	ДОМ - 15:36 _{Датчики}	🔦 🗙
	Датчики	Ξ	ДАВЛЕНИЕ СО	1.2бар 📋	Г		Датчики 🕐	
) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Действия с выходами		ДАВЛЕНИЕ ХВС	Збар 📋	5	ДАВЛ	ІЕНИЕ СО	1.2бар 📋
F	Элементы управления		Напряжение питания	13.2B 📋				
0 III III	Интерфейс пользователя	Ŀ			÷.	ДАВЛ	ІЕНИЕ ХВС	Збар 👕
ap d	Сценарии		напряжение оатареи	4.18	E)	Напр	яжение питания	13.2B 📋

Подробнее в Приложении 4. Схемы подключения.

5.3.2 Действия с выходами

Вкладка для настройки управления выходами Контроллера, не предназначенными для управления Исполнительными устройствами котловых и отопительных контуров.

Управление	Действия с выходами	< ДОМ - 15:43 🔩 🗙 Действия с выходами
🕪 Датчики	Включить вентиляцию в МАСТЕРСКОЙ	Действия с выходами
ј⊡⊶ Действия с выходами	Выключить вентиляцию в МАСТЕРСКОЙ	Включить вентиляцию в МАСТЕРСКОЙ 🛛 📋

Подробнее в Части 2, Раздел 16. Управление выходами Контроллера.

5.3.3 Элементы управления

Вкладка для настройки *Кнопок* управления выходами Контроллера из приложения и веб-интерфейса и отображения *Статусов* (индикаторов состояния) его входов и выходов.

				< дом - 15:53 🔩 ×
F	Элементы управления	Элементы управления 🕐		Элементы управления
	Интерфейс пользователя	КНОПКА включения ВЕНТИЛЯЦИИ в МАСТЕРСКОЙ	Î	Элементы управления 🕲
2 P P	Сценарии	СТАТУС вентиляции в МАСТЕРСКОЙ	Î	КНОПКА включения ВЕНТИЛЯЦИИ в МАСТЕРСКОЙ

Подробнее в Части 2, Раздел 17. Элементы управления и индикации.

5.3.4 Интерфейс пользователя

Вкладка создания Пользователем индивидуальных дополнительных вкладок контроля и управления.

(F)	Элементы управления	Пользовательские вкладки ⑦		< ДОМ - 16:34 🔌 🗙 Интерфейс пользователя
	Интерфейс пользователя	Вентиляция МАСТЕРСКОЙ	i	Пользовательские вкладки
2 2 2 2 2 2 2	Сценарии	= ПОГРЕБ	i	Вентиляция МАСТЕРСКОЙ

Подробнее в Части 2 Раздел 19 Интерфейс пользователя.

5.3.5 Сценарии

Вкладка с настройками для составления сценариев управления Выходами контроллера, Режимами и Командами отопления, Охраной и Оповещениями.

	Управление	Сценарии 🕐	
ក្និភ្នា CL	ценарии	Оповещение об открытых воротах более 5-ти минут	Включен
(م)) Pa	адиоустройства адиомодули	Включение освещения при открытии ворот	Включен
	I		

<	ДОМ - 17:03 Сценарии	∢ ×
	Сценарии	
Опове минут	ещение об открытых ворота	х более 5-ти
•		

Подробнее в Части 2, Раздел 18 Сценарии.

5.4 Блок настроек "Радиоустройства"

Содержит вкладки для регистрации и настройки различных радиодатчиков и радиоустройств, используемых совместно с Контроллером.

Подробнее в Части 2 Раздел 4. Подключение радиоустройств.

5.4.1 Радиомодули

_	Радиоустройства	Радиомодули	<	ДОМ - 18:52 Радиомодули	🔦 🗙
((_N))	Радиомодули	Радиомодуль 433МГц		Радиомодули	
(() ()	Радиобрелоки	Радиомодуль 868 МГц	Радио	модуль 433МГц	

5.4.2 Радиобрелоки

	Радиоустройства	Брелоки 868 МГц ⊘	<	ДОМ - 16:55 Радиобрелоки	×
(m)	Радиомодули	Нет доступных элементов		Брелоки 868 МГц ⊘	
(A)	Радиобрелоки	Брелоки 433 МГц 🗇		Нет доступных элементов	

5.4.3 Радиореле

	👘 Pa	Радиобрелоки	Радиореле	<	ДОМ - 16:55 🤤 Радиобрелоки
	🥢 Pa	адиореле	Нет доступных элементов		Брелоки 868 МГц 💿
L	් Pa	адиодатчики			Нет доступных элементов

5.4.4 Радиодатчики

	Радиоустройства	Радиодатчики 433 МГц 📀	
((₁))	Радиомодули	СМК	Î
	Радиобрелоки	Датчик движения 1	î
(T	Радиореле	Радиодатчики 868 МГц 💿	
ð	Радиодатчики	ДЕД Р	🌡 26.9° 🛜 🗓 📋
	Охрана	БАБУШКА Р	🌡 28.9° 🛜 🖨 📋

< ДОМ - 17:13 🔍 Радиодатчики 🔍 🗙
Радиодатчики 433 МГц
СМК
Датчик движения 1
Радиодатчики 868 МГц 💿

5.5 Блок настроек "Охрана"

Блок предназначен для настройки параметров охранных зон и датчиков при использовании Контроллера в качестве охранной сигнализации, а также реализации дополнительных функций контроля охранных и информационных датчиков.

	Охрана	Охранные зоны 💿	<	ДОМ - 17:29	
\bigcirc	Охранные зоны	🗧 Охранная зона СМК 🔳		Охрана	
Ø	Индикаторы охраны	🗉 Охранная зона ИК 🖀	©	Охранные зоны Индикаторы охраны	,
Ä	Сирены	+ добавить	ĕ	Сирены	>

Подробнее в Части 2, Раздел 20. Функции охранной сигнализации.

5.6 Блок настроек "Прочее"

5.6.1 Устройства Modbus

Вкладка настройки порта RS-485 при организации обмена данными с устройствами, поддерживающими протокол Modbus RTU.

ВНИМАНИЕ!!! В Контроллере аппаратно реализованы 2 порта RS-485. Для подключения Modbus устройств предназначен <u>только</u> один, расположенный в <u>нижней части клеммной колодки</u> прибора. Использование второго порта (верхняя часть контроллера) для этой задачи не предусмотрено.

Описание способов подключения, настройки и управления Modbus устройствами, применяемыми в составе конфигурации Контроллера находится в <u>Инструкции по работе с Modbus устройствами</u>.

5.6.2 Протокол MQTT

Протокол MQTT поддерживается контроллерами с версией прошивки не ниже 420 и работает по каналам связи Wi-Fi и Ethernet.

Примечание: По каналу GSM (мобильная сеть) MQTT не работает.

Настройка адреса MQTT сервера и порта передачи данных выполняется на одноименной вкладке сервиса.

\leftarrow		3000 - 14 МQTT • Настройки	!:04 подклю	чения
	Настройки 🔤		≡	
í 🖍	Радиореле	Настройки		
ð	Радиодатчики	подключения	>	Адрес сервера МQTT
	Охрана	Topics		mqtt://zont_probe:234@mqtt.eclipseprojects
\bigcirc	Охранные зоны	≡ ZONT/Термометры П	Î	
Ø	Индикаторы охраны	≡ ZONT/test/com/# □	Î	
ŏ	Сирены	+ ЛОБАВИТЬ		
	Прочее	, depression		
\$\$	Устройства Modbus			
3	MQTT			
	Сервисный режим			СОХРАНИТЬ -

Описание подключения, настройки и взаимодействия с устройствами по протоколу MQTT. находится в <u>Документации по использованию протокола MQTT в устройствах ZONT</u>.

6. Служебные команды и настройки

В Сервисном режиме доступа к настройкам Личного кабинета пользователю Контроллера становится доступной вкладка *Сервис,* на которой предусмотрены служебные функции:

Перезагрузка (рестарт) Контроллера останавливает работу процессора прибора и сбрасывает все запущенные алгоритмы и режимы

Конфигурация позволяет скачать в отдельный файл конфигурацию из Контроллера или из архива данных на сервере и загрузить в Контроллер конфигурации из ранее сохраненного файла.

Обновление версии ПО (прошивки) Контроллера включается при нажатии на кнопку "Обновить"

Новые версии прошивок Контроллера выпускаются производителем по мере изменения его функциональных возможностей и/или исправления ошибок алгоритма работы. При обновлении прошивки рекомендуется к выбору версия ПО с высшим номером. Такая прошивка протестирована производителем и содержит все исправления для поддержки заявленной работоспособности прибора. Как правило такая версия имеет статус "бета-прошивки" (не вышла в серию).

Обновление можно производить в *автоматическом* режиме, выбрав соответствующую версию прошивки из списка доступных в меню обновлений, или в *ручном* режиме, загрузив файл прошивки, предварительно сохраненный на ПК или смартфоне.

Комендуемые обновления X	< Ручное обновление ×
На сервере всегда доступны самые новые версии прошивок. Выберите необходимую прошивку и нажмите кнопку «Обновить прошивку»	Вы можете обновить ПО устройства вручную с помощью файлов с прошивкой Бульте крайне внимательны при ручном обновлении
Во время загрузки новой прошивки в устройство оно продолжит работать в штатном режиме. По окончании загрузки устройство будет перезагружено.	прошивки, так как указание неправильных или повреждённых файлов может привести к неработоспособности устройства. Выберите файлы с прошивкой и нажмите
список изменений	кнопку «Обновить прошивку» Выберите файла прошивки (.enc) 🔒
ВЕРСИЯ 328:1 ВЕРСИЯ 302:1 Бета	Выберите файла прошивки (.evc) 🔹 🗈
 Поправка функции прокрутки насоса в летнем режиме 	Не перезагружать
🗌 Медленный режим ⑦	🔲 Медленный режим 🕜
ОБНОВИТЬ ПРОШИВКУ	ОБНОВИТЬ ПРОШИВКУ

Примечание: При обновлении прошивки устройства у которого связь с сервером настроена по сети WI-FI нужно использовать "Медленный режим" обновления.

ВНИМАНИЕ!!! При обновления прошивки устройства резервный аккумулятор должен быть во включенном состоянии. Это предохраняет от сбоя программное обеспечение в случае пропадания основного питания. Если при загрузке прошивки произойдет выключение прибора, то возможен выход из строя процессора устройства, восстановление которого возможно только в заводских условиях.

Объем памяти используемой конфигурационным файлом отображается в процентном отношении от общей памяти Контроллера. Стабильная работа прибора возможна при объеме не превышающем 85-90%.

Распределение памяти Контроллера следующее: 15-20% выделено на внутренние процессы управления, а остальной объем занимают программное обеспечение (прошивка), файл конфигурации, пользовательские режимы и сценарии, контролируемые параметры и управляющие команды пользователя.

Алгоритм использование памяти динамический, и если для выполнения какой-то функции не хватает изначально выделенной для нее памяти, Контроллер может использовать дополнительный объем памяти, взяв его от другой, не работающей в данный момент времени функции. В свою очередь функция, у которой была "взята" эта память, при включении также возьмет объем у следующей, а если общего объема уже недостаточно то функция не выполнится, что приведет к ошибке и не выполнению алгоритма.

Именно поэтому, принимая решение о планируемой конфигурации Контроллера, количестве управляемых котлов и регулируемых зон отопления, нужно контролировать объем занимаемой памяти.

Для сокращения занятого объема памяти можно изменить названия контуров, датчиков и других элементов, сократив количество символов в их названиях. Кроме того можно уменьшить количество контуров потребителей, элементов управления (кнопок и статусов), сократить количество сценариев или оптимизировать алгоритмы управления в сценариях.

7. Сброс к заводским настройкам, рестарт, сброс привязки в сети wi-fi

Сброс настроек Контроллера к заводской конфигурации выполняется вручную, через удержание в нажатом состоянии более 10 сек кнопки RESTORE на корпусе прибора, или дистанционно, через SMS-команду root DEFAULT, отправленную с номера телефона, указанного в настройке "Пользователи".

Во время выполнения команды сброса все индикаторы рядом с кнопкой RESTORE периодически вспыхивают, так же как это происходит при включении питания Контроллера.

Рестарт работы процессора Контроллера выполняется вручную через 5 коротких нажатий кнопки RESTORE на корпусе прибора, или дистанционно, через через SMS-команду root RESTART, с номера телефона, указанного на вкладке "Пользователи".

Сброс настроек сети wi-fi выполняется вручную через 3 коротких нажатия кнопки RESTORE на корпусе прибора.

УНИВЕРСАЛЬНЫЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ ОТОПЛЕНИЯ

ZONT H2000+ PRO.V2

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Часть 2. Монтаж и подключение. Настройка конфигурации

ML.TD.ZH2000PRO.V2.001

Руководство пользователя

Часть 2. Монтаж и подключение. Настройка конфигурации.

1. Техника безопасности

Контроллер монтируется в электротехнических шкафах на DIN-рейку. При проектировании места установки шкафа с Контроллером необходимо учитывать условия окружающей среды и класс защиты Контроллера. В случае монтажа шкафа в местах с характеристиками окружающей среды, отличающимися от указанных в <u>технических характеристиках Контроллера</u>, необходимо предусмотреть технические способы защиты Контроллера, соответствующие условиям окружающей среды. Монтаж следует производить в соответствии с требованиями "Правил устройства электроустановок" (ПУЭ), ГОСТ 23592-96 "Монтаж электрический радиоэлектронной аппаратуры и приборов", а также других применимых нормативных документов.

ВНИМАНИЕ!!! Несоблюдение требований нормативных документов при монтаже может привести к сбоям в работе Контроллера и/или выходу из строя Контроллера и/или выходу из строя оборудования, подключенного к Контроллеру и, как следствие, может привести к неисправности системы в целом.

ВНИМАНИЕ!!! Во избежание электрического повреждения внутренней схемы Контроллера все подключения к клеммам Контроллера необходимо производить при выключенном электропитании, в том числе выключенном встроенном аккумуляторе.

ВНИМАНИЕ!!! Монтаж и подключения должен выполнять специалист, имеющий соответствующую квалификацию и опыт работы с аналогичным оборудованием.

2. Подключение основного и резервного электропитания

Внешний вид, описание назначения разъемов и клеммников Контроллера приведены в Приложении 3. Назначение контактных групп Контроллера. Подключение источника основного +12V +12V Bxog +12V Bbixog и 📥, клеммника "Питание" с соблюдением питания производится к клеммам Вход +12V полярности. Выход питания выход можно использовать для подключения питания датчиков, реле и прочих устройств. Суммарная мощность подключаемых устройств не должна превышать мощность указанную в характеристиках приведенных в технических характеристиках Контроллера.

Примечание: При питании Контроллера от встроенного резервного аккумулятора напряжение на выходе выход отсутствует. Для организации питания датчиков и устройств, которые должны продолжать работать при отсутствии основного питания, необходимо применять дополнительный резервированный (имеющий собственный аккумулятор) источник питания.

После проверки всех подключений и включения Контроллера для постоянной работы необходимо включить встроенный резервный аккумулятор.

Примечание: Встроенный резервный аккумулятор поддерживает работу внутренней схемы Контроллера (процессора, модемов GSM и Wi-Fi, портов Ethernet, RS-485, встроенных адаптеров цифровой шины, проводных датчиков температуры (подключенных по двухпроводной схеме)), а

также всех датчиков и исполнительных устройств подключенных к универсальным входам в том случае если они запитаны от резервируемого источника питания.

Примечание: Релейные выходы при питании от резервного аккумулятора не работают.

Для автоматического контроля основного и резервного питания Контроллера нужно на вкладке "Датчики" выполнить две настройки: контроль "напряжения питания" и контроль "напряжения батареи".

Датчики 💿	Название ⑦		Номер аппаратного входа Не выблано	0
Напряжение питания 17В			Не выбрано	
в Датчик 🔳	Гип сенсора (?) Аналоговый вход		Вход №1 Вход №2	
+ ДОБАВИТЬ	Порог срабатывани	я, В 🕥	Вход №3	
Радиодатчики 868 МГц 🗇	Нижний О	0 Верхний	Вход №4 Вход №5	
Нет доступных элементов			Вход №6	
Радиодатчики 433 МГц 곗	🔲 Использовать та	блицу пересчета	Напряжение питания	
Нет доступных элементов			Напряжение батареи 🔫	•

Для формирования оповещений об отклонении и восстановлении напряжения питания, а также выполнения заданных действий по таким событиям, в настройке необходимо указать нижний и верхний пороги срабатывания и включить параметр "Событие на сервер при срабатывании".

Датчики 🗇	Номер аппаратного входа	Порог срабатывания, В
	Напряжение питания	 Нижний 10 24 Верхний
Напряжение питания 16.9В	Длительность уровня, сек 🕥	
+ ДОБАВИТЬ	Неактив 2 Актив 1	П использовать гаолицу пересчета
Радиодатчики 868 МГц 💿	Событие на сервер при срабатывании 📀)
Нет доступных элементов		Действия ⑦
Радиодатчики 433 МГц 🕐	Выполнить при выходе за верхний порог	Выбрано: 0 🕇
Нет доступных элементов	Выполнить при выходе за нижний порог	Выбрано: 0 🕂
	Выполнить при восстановлении	Выбрано: 0 🕇

Контрольные панели напряжения будут отображаться на вкладке "Отопление" в группе "Датчики".

ВНИМАНИЕ!!! При подключении к Контроллеру датчиков с отдельными источниками питания, необходимо соединять "минусы" этих источников с "минусом" Контроллера.

3. Подключение каналов связи с сервером

Информация о подключении каналов связи Контроллера с севером ZONT приведена в <u>Части 1</u> Раздел 3 Настройка связи Контроллера с Сервером.

4. Подключение радиоустройств

Контроллер поддерживает радиоустройства на частотах 433 МГц и 868 МГц.

- Встроенный радиомодуль 433 МГц поддерживает стандартные радиодатчики и радиобрелоки, использующие кодировку РТ2262 и EV1527 (требуется антенна опционально);
- Подключаемый радиомодуль 868 МГц (<u>модель ZONT МЛ-590</u>), поддерживает оригинальные радиодатчики и радиобрелоки ZONT. Один радиомодуль контролирует не более 40 радиодатчиков. Допускается одновременное подключение трех радиомодулей.

Примечание: Подключаемый Радиомодуль 868 МГц обеспечивает шифрование сигнала и обратную связь с радиоустройствами, что позволяет контролировать и отображать текущее состояние устройства, мощность радиосигнала в месте его установки и уровень заряда элемента питания в нем. Открытый радиоканал 433 МГц этих данных не отображает, а только формирует и передает сигнал тревога в момент срабатывания датчика или отправки команды в момент нажатия кнопки брелока.

4.1 Радиоустройства 433 МГц

Если планируется использовать радиодатчики и брелоки, работающие на частоте 433 МГц, то необходимо к одноименному разъему Контроллера подключить радиоантенну. Если такие датчики не планируется применять, антенну можно не подключать.

Каждому радиодатчику 433 МГц можно присвоить индивидуальное название и запрограммировать действия (реакцию) Контроллера на факт его срабатывания: отправку

оповещений, выполнение действий с выходами Контроллера, запуск сценария, включение режима отопления или команды управления.

	=	Название 🕥	Задержка сброса события
"To	Радиодатчики 433	СМК	срабатывания
Ö	҆҆МГц		ГМИН
\bigcirc	СМК	Тип 🕜 Датчик открытия двери/окна	
6	🗉 Датчик движения 1 📋	🔲 Контроль без охраны 💿 🛛 🗹	обытична сервер
ĕ	Радиодатчики 868		Дейстия 💿
\$ <u></u>	≡ ДЕД Р 🌡 26.4° 穼 🗋 📋	Выполнить при срабатывании	Выбрано: 0 +

ВНИМАНИЕ!!! Необходимо помнить, что стандартные датчики 433 МГц могут отправлять Контроллеру сигнал тревоги только в момент сработки и не отправляют Контроллеру сигналы о дальнейшем своем состоянии. Т.е. если вы используете стандартный датчик открытия двери 433 МГц, то сигнал тревоги датчик отправит после открытия двери. Если дверь не закроется Контроллер не получит повторных сигналов тревоги. Следующий сигнал тревоги датчик отправит только после закрытия двери и следующего открытия двери.

Каждую кнопку брелока 433 МГЦ можно запрограммировать на отправку оповещений, выполнение действия с выходом Контроллера, запуск сценария, включение режима отопления или команды управления охранной зоной (постановкой / снятием с охраны).

и́нопки брелока 🛛 🖉			
Поставить на охрану			i ~
Снять с охраны			Î ^
Имя (Снять с охраны	Уникальный ID 2763570		Ē
Список действий при нажатии кног	тки		^
∃ Снять охранную зону 'Охранная з	она' с охраны 🧻	+	× 0

4.2 Радиоустройства 868 МГц

Для контроля радиоустройств на частоте 868 МГц в конфигурации Контроллера необходимо использовать <u>Радиомодуль МЛ-590</u>. Он не входит в комплект поставки Контроллера и приобретается отдельно. Схема подключения радиомодуля к Контроллеру приведена в <u>Приложении 4, Раздел 1. Подключение датчиков и устройств к шине RS-485</u>.

Для усиления (повторения) сигнала обмена данными между устройствами и датчиками ZONT рекомендуется использовать <u>Репитер МЛ-620</u>. Он не входит в комплект поставки Контроллера и приобретается отдельно.

После подключения радиомодуля к Контроллеру он автоматически добавляется в конфигурацию прибора и его состояние отображается в блоке настроек "Радиоустройства" на вкладке "Радиомодули".

Рекомендуется задать время задержки на определение факта потери связи радиомодуля с контроллером и формирования уведомления об этом событии, а также выбрать действие, которое необходимо выполнить при этом (оповещение, команда и т.п.). Рекомендуемое время задержки – 20 минут.

Состояние радиомодуля отражает индикатор связи подключен или не на связи и время последнего сеанса обмена данными.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Радиомодули	Название ⊘	Серийный №
		Радиомодуль 868 МГц	87404
((_N))	Радиомодуль 433МГц		
~@	Радиомодуль 868	потере связи с модулем	0
	МГц	20 ми	н
"🖌			
Ő	+ ДОБАВИТЬ		Действия ⑦
		Выполнить при	Выбрано: 0 🕂
\bigcirc		срабатывании	
		Подключен Последнее обновление	данных - 13:05 11.05.2023
O			
ă		+ добав	ИТЬ УСТРОИСТВА

Обмен данными по радиоканалу 868 МГц осуществляется по оригинальному шифрованному протоколу, который поддерживает только оригинальные датчики ZONT:

- радиодатчики:
 - МЛ-711 радиодатчик температуры уличный;
 - МЛ-712 радиодатчик протечки воды;
 - МЛ-714 радиопередатчик размыкания/замыкания;
 - МЛ-719 радиодатчик температуры и влажности воздуха в помещении;
 - МЛ-740 радиодатчик измерения температуры воздуха в помещении;
 - МЛ-745 радиодатчик температуры и влажности воздуха в помещении;
 - МЛ-785 радиодатчик температуры теплоносителя с выносным сенсором в оригинальном пластиковом корпусе, класс защиты IP67;
 - МЛ-570 радиодатчик движения инфракрасный (ИК);
- радиобрелоки ZONT Home;
- радиорелейные блоки расширения ZRE-66;
- комнатный радиотермостат МЛ-332.

Примечание: Для экономии заряда элемента питания радиодатчиков ZONT 868 МГц обмен данными с ним производится по следующему алгоритму:

- если измеряемые параметры не изменяются, то данные обновляются с периодичностью раз в 10 минут;
- если измеряемые параметры изменяются либо произошло срабатывание датчика (тревога)
 обмен данными производится мгновенно после изменения/срабатывания.

4.3 Регистрации радиоустройств

Алгоритм регистрации радиодатчиков и радиобрелоков заключается в "привязке" кода каждого радиоустройства к конкретному радиомодулю.

При регистрации важно соблюдать следующие условия:

- регистрируемое радиоустройство располагается в одной плоскости с радиомодулем на удалении от 3-х до 5-ти метров от радиомодуля;
- напряжение элемента питания радиоустройства (батарейки) должно соответствовать паспортным значения (не менее 2,8 В).

4.3.1 Регистрация радиоустройств 433 МГц

Для регистрации радиодатчиков 433 МГц необходимо запустить режим "Разрешить добавление датчиков". Режим добавления не имеет ограничения по времени и может быть отменен в любой

МОМЕНТ ТОЙ ЖЕ КНОПКОЙ + ОТМЕНИТЬ ДОБАВЛЕНИЕ ДАТЧИКО

_	_	Подключен Последнее обновление данных - 13:18 11.05.2023
2 T	Радиомодули	
((_N))	Радиомодуль 433МГц	Брелоки 💿
(() () () () () () () () () () () () ()	Радиомодуль 868 МГц	Нет доступных элементов + ДОБАВИТЬ
ð	+ ДОБАВИТЬ	Радиодатчики 433 МГц 💿
\bigcirc		+ РАЗРЕШИТЬ ДОБАВЛЕНИЕ ДАТЧИКОВ

О готовности к регистрации можно судить по индикатору готовности к добавлению датчиков

Для регистрации радиодатчика датчика необходимо во время действия режима добавления вызвать срабатывание датчика. При успешной регистрации датчик автоматически появляется в списке всех радиодатчиков конфигурации и на вкладке "Отопление" личного кабинета сервиса

отображается панель радиодатчика с индикатором 🍄 .

При регистрации радиобрелоков 433 МГц необходимо учитывать, что каждая кнопка брелока регистрируется как самостоятельное устройство.

Порядок регистрации следующий – сначала нужно добавить новый радиобрелок в настройках радиоустройств и сохранить настройку. Только после этого станет активна кнопка "Разрешить добавление кнопок" для этого брелка. Состояние режима добавления можно контролировать по индикации кнопок добавления:

+ PA	+ разрешить добавление кнопок – режим добавления не активен,					
+ 01	+ отменить добавление кнопок – режим добавления активен.					
िद्देग	Брелоки 868 МГц 🕐	Название 🕥				
((%))	Нет доступных элементов	Брелок ХОЗЯИН				
e e e e e e e e e e e e e e e e e e e	Брелоки 433 МГц 🕐	+ ОТМЕНИТЬ ДОБАВЛЕНИЕ КНОПОК				
(r (* +	Брелок ХОЗЯИН 📋	Кнопки брелока 🕐				
Ó	+ ДОБАВИТЬ	Нет доступных элементов				

4.3.2 Регистрация радиоустройств 868 МГц

Регистрацию оригинальных радиоустройств ZONT, работающих на частоте 868 МГц необходимо выполнять в соответствии с <u>Инструкцией на радиомодуль МЛ-590</u>.

Радиорелейный блок расширения ZRE-66 регистрируется по тому же алгоритму, что и радиодатчик 868 МГц. После включения режима добавления необходимо снять верхнюю крышку корпуса блока расширения, нажать и удерживать кнопку на плате радиоблока пока не загорится светодиодный индикатор на 1-15, секунды.

При успешной регистрации блок расширения отображается в списке всех радиоустройств контроллера в разделе "Радиореле", а его входы и выходы становятся доступными для выбора в списках входов / выходов конфигурации Контроллера.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Радиореле Название (?) Серийн		Серийный номер
"		ZRE-66 (навес перед)	430427
<b>E</b>	ZRE-66 (навес перед) С П	Задержка формирования события о	
ð	•	потере связи с датчиком	🗸 Событие на сервер 🕐
	ZRE-66 (полив) 💼	20 мин	
$\bigcirc$	ବ 🗓 Нет связи		
6			Действия 🕜
		Выполнить при потере	Выбрано: 0 +
Ä		Связи	

*Примечание:* Если индикатор на блоке расширения не загорается, а однократно вспыхивает, отпустите кнопку и повторно проведите регистрацию.

### Контроль уровня сигнала и напряжения элемента питания радиоустройств.

Уровень сигнала в радиоустройствах 868 МГц можно оценить по количеству вспышек его индикатора:

- три длинные вспышки отличный сигнал;
- две длинные вспышки хороший сигнал;
- одна длинная вспышка удовлетворительный сигнал;
- одна короткая вспышка связь отсутствует (отключен радиомодуль, датчик находится вне зоны покрытия, датчик не зарегистрирован).

Также уровень и напряжение элемента питания отображается в списке радиодатчиков конфигурации Контроллера.

≡ ПОГРЕБ Р	اً 13.2° أً€ 70% 🕫 أأ	~	≡ ПОГРЕБ Р	اً 13.2° أً€ 70 % 🗟 📋 🗸 🗸
≡ СЕНИ Р	8 24.1° ⁽¹⁾ 38 % 3 ⁽²⁾	~	≡ СЕНИ Р	ê 24.1° ê∃38% 😤 🗋 👕 ∨
≡ КУХНЯ Р	-64 дБм 27.3° 📚 🗎 🗍	~	≡ КУХНЯ Р	24B 27.3° 奈白 🗸 🗸

### и на вкладке "Отопление" личного кабинета сервиса

ТЕМПЕРАТУРА		<u> </u>		ТЕМПЕРАТУРА			
13.1° погреб р ДАТЧИКИ	¢ ? 1	³⁰ <b>24.0°</b> 5 СЕНИ Р	\$ ? і -64 дБм	13.1° погреб р ДАТЧИКИ	<b>ب</b> ای چ	³⁰ <b>24.0°</b> 5 СЕНИ Р	2.4 B
⁸⁰ 70 % ₃₀ погреб р	61 ¢ †	⁸⁰ 38 % ₂₀ СЕНИ Р	¢:€ ≑ []	⁸⁰ 70 % ₃₀ Погреб р	)	⁸⁰ 38 % ₂₀ СЕНИ Р	) <b>()</b> ()

При наведении курсора на соответствующий символ значения уровня сигнала и напряжение элемента питания начинают отображаться.

*Примечание:* Радиодатчики температуры воздуха и влажности отображают измеряемые параметры в разных блоках вкладки "Отопление" личного кабинета сервиса: температура воздуха отображается в блоке "Датчики температуры", а влажность в в блоке "Датчики".

## 5. Подключение аналоговых датчиков и устройств с дискретным выходом

Каждый универсальный вход/выход Контроллера в зависимости от решаемой им задачи используется в конфигурации или как аналоговый вход или как управляемый выход типа "открытый коллектор". Выбор выполняется в момент назначения входа/выхода при настройке вкладок "Действие с выходами", Исполнительные устройства" и "Датчики".

**Аналоговый вход** контролирует состояние аналогового датчика с выходом 0-5 В или дискретного датчика (устройства) с выходом "сухой контакт", а также для измерения напряжения питания подключенного источника постоянного тока. Максимальное напряжение в этом случае не должно превышать 30В.

Через **Выход** "Открытый коллектор" (ОК) Контроллер может управлять питанием (включать/выключать) любого электроприбора, напряжение питания которого не превышает напряжение питания Контроллера. Если напряжение питания электроприбора выше чем напряжение питания Контроллера, то для его подключения необходимо использовать в схеме дополнительное промежуточное реле.

Схемы подключения различных устройств к универсальным входам/выходам приведены в Приложении 4. Схемы подключения и рекомендации по подключению.

**ВНИМАНИЕ!!!** В конфигурационном файле Контроллера недопустимо один и тот же Универсальный вход/выход назначить и как Аналоговый вход и как Выход ОК.

## 5.1 Аналоговые датчики

К аналоговому входу Контроллера можно подключить любой аналоговый датчик, выходной сигнал которого изменяется в диапазоне 0-5В: датчики давления, температуры, влажности, освещенности и т.п., а также через аналоговый вход можно контролировать напряжение.

Настройка универсального входа Контроллера для контроля состояния аналогового датчика выполняется на вкладке "Датчики":

- сначала нужно указать номер входа к которому датчик подключен, выбрать тип сенсора "*Аналоговый вход*" и задать единицы измерения в соответствии с видом датчика;
- затем выполнить калибровку входа, для чего заполнить таблицу пересчета контролируемого напряжения с выхода датчика в единицы измеряемого им параметра.
   Значения для таблицы берутся или из документации на датчик или опытным путем.

*Примечание:* Если датчик имеет *линейную характеристику,* то в таблице достаточно указать два значения. Если датчик имеет *нелинейную характеристику,* то для повышения точности показаний необходимо указать как можно больше значений (контрольных точек).

*Примечание:* Аналоговые датчики 0-5В, как правило, имеют линейную характеристику и в таблице достаточно указать нулевое значение измеряемой величины, которое соответствует 0,5В и максимальное значение измеряемого датчиком диапазона, которое соответствует 4,5В.

Для каждого контролируемого датчика можно задать:

- Верхний и нижний порог контролируемого параметра, которые используются для формирования оповещений или выполнения Контроллером заданных действий при выходе параметра за эти пороги;
- Длительность уровня время в течении которого параметр должен быть превышен, чтобы Контроллер зафиксировал это событие;

## • Условия контроля:

– "контроль без охраны" – датчик контролируется или 24/7 или только при включенном режиме охраны (нахождении в активной охранной зоне);

– "контроль при отсутствии питания" – датчик контролируется в т.ч. и при питании Контроллера от резервного аккумулятора;

 - "Событие на сервер при срабатывании" – разрешает или запрещает оповещения в личном кабинете сервиса;

– "режим сопротивления" – используется для подключения датчиков с контролем сопротивления шлейфа, пороги задаются в кОм;

– "не аварийный" – отменяется аварийная индикация при сработке или отклонении от пороговых значений (датчик только выделяется желтым цветом)

Ниже пример настройки аналогового датчика давления 0-5В с диапазоном измерений 0-5 бар.

	Латчики @	Название ⊘	Номер аппаратного входа				
8	Harris	ДАВЛЕНИЕ СО	Вх/Вых №1 -				
•	🛛 ДАВЛЕНИЕ СО 1.1 бар 📋	Тип сенсора ⊘					
1000	🗉 ДАВЛЕНИЕ ХВС Збар 📋	Аналоговый вход	v				
	Напряжение питания 13.1 В	Порог срабатывания, бар 🕥	Длительность уровня, сек 🕥				
	Напряжение батареи 😑	Нижний 1,3 1,8 Верхний	Неактив 60 Актив 60				
°	4.1 B		Контроль без охраны ⑦				
	Напряжение сети	Использовать таблицу пересчета	<ul> <li>Контроль при отсутствии</li> <li>питания</li> </ul>				
y ×⊃+	Токвсети 15.5А 🗑		Событие на сервер при            срабатывании				
F	🗉 Частота сети 50 Гц 📋	Режим измерения сопротивления					
0 10 10	Активная мощность		Действия ⊘				
ab ab	E сеть 🗐 2896.2 Вт	Выполнить при выходе за верхний порог	Выбрано: 0 🕂				
((n))	Полная мощность	Выполнить при выходе за нижний порог	Выбрано: 0 🕂				
¢.	≡ сеть 🔳 3129 ВА	Выполнить при восстановлении	Выбрано: 0 🛛 🕂				
"	ZE84E на 2000ПРО:	Единицы измерения					
Ó	<ul> <li>Напряжение питания 13 В</li> </ul>	Давление, бар	•				
$\bigcirc$	ZE84E на 2000ПРО:	Пересчитанное значение На	пряжение 🕒				
Ø	Напряжение батареи 4.1 В	0 бар (	0,5 В 🗎 👪				
Ä	ZE88-1 на 2000ПРО:	5 őap 4	4,5 В 🗎 👬				

*Примечание:* Если к аналоговому входу Контроллера подключен один из датчиков, указанных в списке "Тип сенсора", то рекомендуется выбирать этот тип и не заполнять таблицу пересчета.

Название 🕜	Номер аппаратного входа
Датчик	Блок расширения: Вход №5
Тип сенсора	
Аналоговый вход	
Аналоговый вход	
Датчик давления HK3022 5	бар
Датчик давления HK3022 1	2 бар
Датчик давления MLD-06	
Магнитный датчик открыв	ания двери/окна
ИК датчик движения с конт	гролем шлейфа
Датчик дыма	
Датчик протечки	
ИК датчик движения без ко	онтроля шлейфа
Комнатный термостат	
Авария котла +	
Авария котла -	
Датчик влажности воздуха	
Дискретный вход нормалы	но разомкнутый
Дискретный вход нормалы	но замкнутый

Схемы подключения аналоговых датчиков приведены в <u>Приложении 4, Раздел 3. Подключение</u> аналоговых датчиков.

#### 5.2 Дискретные датчики и устройства с дискретным выходом

К аналоговому входу Контроллера можно подключить дискретный датчик с выходом типа "сухой контакт". Текущее состояние такого датчиав соответствуют замкнутому или разомкнутому состоянию контактов на его выходе. В зависимости от того какому состоянию выхода соответствует сработка контролируемого датчика выбирается схема его подключения к Контроллеру и тип сенсора в его настройках.

ВНИМАНИЕ!!! Для датчиков имеющих питание внутренней схемы, нормальным состоянием контактов считается состояние контактов при включенном питании. Так реализовано в большинстве охранных датчиков: при включенном питании датчика контакты выхода замкнуты, а при отключении питания контакты размыкаются. Это сделано для того, чтобы точно понимать, что внутренняя схема датчика запитана и датчик сработает в нужный момент.

Если ко входу Контроллера подключен один из типовых датчиков, указанных в списке "Тип сенсора", то рекомендуется выбирать предустановленный для таких датчиков тип сенсора:

- магнитный датчик открывания двери/окна (СМК датчик),
- ИК датчик движения с контролем шлейфа,
- ИК датчик движения без контроля шлейфа.

Эта настройка задает предустановленные пороговые значения напряжения на указанном входе при которых будет считаться, находится ли датчик в нормальном состоянии или он сработал.

Схемы подключения распространенных типов датчиков приведены в <u>Приложении 4. Схемы</u> подключения и рекомендации по подключению.

Если вы не нашли схемы для подключаемого дискретного датчика среди предлагаемых в настоящей документации, нужно выяснить, какому состоянию контактов (замкнут или разомкнут) соответствует нормальное состояние датчика и состояние его сработки. После чего выбрать аналогичный датчик из числа предлагаемых.

По такому же принципу к Контроллеру можно подключить дискретные сигналы с других инженерных систем для отображений их состояния в сервисе ZONT. Подробнее в <u>Приложении 4</u>.

## 5.3 Охранные и информационные датчики

Контроль состояния аналоговых датчиков или датчиков с дискретным выходом предназначенных для охраны или информирования может осуществляться Контроллером постоянно (24/7) или только в режиме охраны. Для выбора способа контроля предназначена настройка входа "Контроль без охраны".

Для контроля таких датчиков и автоматического запуска действий Контроллера при их сработке, рекомендуется создавать "Охранные зоны", в которых указывать контролируемые датчики. Постановка такой зоны в режим охраны активирует контроль находящихся в ней датчиков. Снятие зоны с охраны – деактивирует контроль.

Для датчиков указанных в охранной зоне не нужно задавать действия при их сработке. Эти действия необходимо указывать непосредственно для охранной зоны. Тогда сработка любого из датчиков в зоне будет автоматически активировать действие или оповещение.

Если же датчик не помещен в охранную зону, эта зона не переведена в режим охраны, или если датчик не имеет признака "контроль без охраны", то датчик не контролируется, событие срабатывания датчика не фиксируется, действие с выходом не выполняется, событий в журнале не отображается и индикация состояния датчика в приложении не меняется.

Подробная информация о настройке охранных зон приведена в <u>Части 2, Раздел 20. Функции</u> охранной сигнализации.

#### 6. Подключение датчиков температуры

Контроллер обрабатывает данные от датчиков температуры следующих типов:

- аналоговых (NTC и им подобных);
- цифровых DS18S20 или DS18B20 (интерфейс передачи данных 1-Wire);
- цифровых ZONT (интерфейс передачи данных RS-485);
- радиодатчиков ZONT (радиоканал 868 МГц).

## 6.1 Аналоговые датчики температуры

Контроллер поддерживает аналоговые датчики температуры NTC или аналогичные им. В комплект Контроллера входят аналоговые датчики температуры NTC-10K с тепловой характеристикой 3950 и сопротивлением 10 кОм при 25°C. Датчики имеют обратную зависимость сопротивления от температуры. Нелинейная характеристика датчика линеаризуется программно на основе таблицы значений "Температура – Сопротивление"

Температура (гр. Ц)	-10	0	10	20	25	40	60	80
Сопротивление (кОМ)	55,3	32,65	19,9	12,49	10,0	5,32	2,49	1,26

Датчики NTC-10К из комплекта прибора рекомендуется подключать к специальными входам Контроллера, имеющим маркировку NTC

	Датчики температуры	Цифровые датчики температуры 🗇				
°.?,°	Исполнительные устройства	≡ Хамам	42.5° 📋			
	Управление	🗉 Вода в бассейне	29.3° 📋			
	Датчики	≡ ТП обратка	25.6° 📋			
,×⊃	Действия с выходами	+ ДОБАВИТЬ				
F	Элементы управления	Аналоговые датчики температуры @				
	Интерфейс пользователя	Нет доступных элементов				
20	Сценарии	+ ДОБАВИТЬ				

**ВНИМАНИЕ!!!** При подключении к Контроллеру аналоговый датчик температуры автоматически не определяется и не отображается в конфигурации Контроллера. Его необходимо добавить вручную в разделе настроек "Аналоговые датчики температуры", указать номер Входа (NTC или универсального), к которому датчик физически подключен, тип подключаемого датчика и сопротивление резистора подтяжки, если датчик подключен к универсальному входу/выходу, а не ко входу NTC.

Использование резистора подтяжки входа к +12 В основного питания Контроллера, при подключении аналогового датчика к универсальному входу/выходу – обязательно. Для датчиков NTC 10К сопротивление резистора подтяжки должно быть равно 15 кОм.

	Аналоговые датчики	Название ⊘	Номер аппаратного входа
	температуры	Температура обратки	Вход NTC №1 👻
°,,	Температура обратки 32.3°	Тип датчика ⑦ NTC10 ~	Пороги, °С ⑦ Нижний Верхний
(( ; )) ,× ,×	ZONT NTC 3950 в ≡ гильзе из комплекта 📋 32.3°	Гистерезис выхода за пороги ⑦ 0 °C	Задержка формирования события о потере связи с датчиком 2 мин
	ZONT NTC 3950 в корпусе из комплекта	Калибровочное смещение ⑦ 0 °C	Сопротивление подтяжки ⑦ 0 кОм

Схемы подключения аналоговых датчиков температуры приведены в <u>Приложении 4, Раздел 3</u> <u>Подключение аналоговых датчиков температуры NTC</u>.

К Контроллеру можно подключать как оригинальные датчики ZONT МЛ-773, МЛ-774, так и не оригинальные датчики NTC-10 с характеристикой 3950, 3988. При необходимости применения с Контроллером аналоговых датчиков температуры Pt100, Pt500, Pt1000, NTC-1, NTC-1.8, NTC-2, NTC-3, NTC-5, NTC-20, NTC-47 или других, аналогичных им, в настроечных параметрах таких датчиков надо указать тип подключаемого датчика и сопротивление использованного при подключении резистора подтяжки.

Если к Контроллеру подключается аналоговый датчик температуры тип которого отсутствует в выборе то в настроечных параметрах такого датчика надо указать тип "Другой", и использовать таблицу пересчета.

Для терморезисторов (датчиков температуры у которых с изменением температуры изменяется сопротивление) в таблице пересчета нужно указывать значения сопротивления в Ом, соответствующие определенной температуре. Значения сопротивления указаны в документации на применяемый датчик.

*Примечание* Сопротивление резистора подтяжки в схеме подключения аналоговых датчиков температуры отличных от NTC-10 подбирается индивидуально для каждого типа датчиков.

Для токовых датчиков температуры с выходом 4-20мА, необходимо указать токовый вход к которому подключен такой датчик и вписать в таблицу значения тока в мА, соответствующие температуре.

*Примечание* Поддержка токовых датчиков температуры возможна в Контроллерах с версии прошивки 470 и выше.

## 6.2 Цифровые датчики температуры DS18S20 / DS18B20

Цифровые датчики температуры DS18S2 или /DS18B20 подключаются к Контроллеру по интерфейсу 1-WIRE . При правильном подключении цифровой датчик температуры определяется прибором автоматически и отображается в настройке "Цифровые датчики температуры". Каждому такому датчику соответствует уникальный идентификационный номер.

	Цифровые датчики температуры		Название 💮 УЛИЦА		Источник сигнала	•
°,°,° °,°,°	УЛИЦА	21.5° 📋	Серийный номер		Пороги, °С ⊘	
Ϋ́	≡ БАНЯ	48.0° 📋	0316876356FF28		Нижний -35	Верхний 35
	≡ САРАЙ	🇊	1	°C	потере связи с дат	чиком
	≡ ГАРАЖ	- 1	Калибровочное смещение (2)		4	мин
	КОНТРОЛЛЕР ВОРОТА		0	°C		

Схема подключения приведена в <u>Приложении 4, Раздел 2. Подключение цифровых датчиков</u> <u>температуры к шине 1-wire)</u>.

*Примечание:* Производитель оборудования не гарантирует нормальную работу неоригинальных цифровых датчиков температуры DS18S20 / DS18B20. Оригинальными датчиками считаются датчики с сенсорами производства MAXIM.

## 6.3 Цифровые датчики ZONT

Цифровые датчики ZONT подключаются по интерфейсу RS-485 и могут быть размещены относительно Контроллера на удалении до 200 м.

Датчик температуры МЛ-778 определяется прибором автоматически и отображается в настройке "Цифровые датчики температуры". Каждому такому датчику соответствует уникальный идентификационный номер. Если автоматического определения не произошло, необходимо активировать поиск в ручном режиме, для чего нажать кнопку на плате датчика.

	Цифровые датчики температуры		Название 🕥	Источник сигнала		
			1 этаж	Датчик температуры и влажно 👻		
°	🗉 Мансарда	20.9° 📋	Пороги, °С	Гистерезис выхода за пороги		
	≣ 1 этаж	20.8° 📋	Нижний 15 Верхний 35			
لا ج⊃	🗉 2 этаж	21.2° 📋	потере связи с датчиком	калиоровочное смещение 🎲		
_ _		21.0° =	5 МИН			

Датчик температуры и влажности МЛ-779 определяется прибором тоже автоматически, но только как датчик температуры. Как датчик влажности, он добавляется в конфигурацию вручную, через настройку сервиса "Датчики". При этом необходимо указать в параметре "Номер аппаратного входа" – "Датчик температуры и влажности".

°.?.°	Датчики ⑦	Название 🕥 Номер аппаратного входа 💿		
(())	Датчик влажности воздуха 1 этаж 40 %	Датчик влажности воздуха 1 этаж Датчик температуры и влажно Тип сенсора ③		
r F Inc	Датчик влажности ≡ воздуха 2 этаж 40%	Датчик влажности воздуха           Порог срабатывания, % ⑦         Длительность уровня, сек ⑦           Нижний 5         20         Верхний         Неактив 1         Актив 1	•	

Для датчиков МЛ-778 и МЛ-779 можно задать нижнюю и верхнюю границы измеряемых ими значений, при пересечении которых можно настроить отправку оповещения или выполнение выбранного действия.

*Примечание:* Общее количество устройств одновременно подключенных к шине RS-485 (датчиков, адаптеров и прочих модулей) не должно превышать 32 шт.

Подробное описание датчиков приведено в документации на датчики и размещено на сайте в разделе <u>Поддержка. Техническая документация</u>.

Схема подключения датчиков к Контроллеру приведена в <u>Приложение 4, Раздел 1.5. Подключение</u> датчиков температуры ZONT RS-485.

## 6.4 Радиодатчики ZONT

Радиодатчики ZONT обмениваются данными с Контроллером по радиоканалу на частоте 868 МГц. Чтобы этот обмен был возможен к Контроллеру подключается дополнительное устройство – Радиомодуль МЛ-590. Данный радиомодуль обеспечивает двусторонний обмен данными на радиочастоте 868 МГц по оригинальному протоколу ZONT. Радиодатчики 868 МГц других производителей им не поддерживаются.

Полная информация о подключении и настройке радиодатчиков приведена в <u>Части 2, Раздел 4.</u> <u>Подключение радиоканалов 433 МГц и 868 МГц</u>.

## 6.5 Контроль уличной температуры по данным с погодного сервера

Для реализации алгоритмов работы Контроллера с использованием уличной температуры (режимы ПЗА и Лето), можно использовать данные с погодного сервера

получаемые из

интернет.



Для этого в блоке настроек "Общее" необходимо указать на карте географическое месторасположение объекта, где установлен Контроллер.

*Примечание:* Информацию об уличной температуре Контроллер может получать только из одного источника. Функция контроля температуры по данным с погодного сервера доступна при условии, когда ни один из датчиков в конфигурации контроллера не используется как "Уличный датчик". Это

относится и к настройкам исполнительного устройства Адаптер цифровой шины, в котором тоже не должен быть активирован параметр "Уличный датчик".

	Цифровые датчик температуры	N ()	Название ⊘ УЛИЦА		Источник сигнала Не выбрано	•
0,0,0	УЛИЦА 21.5	•	Серийный номер		Пороги, °С   (?)	
°Д°	≣ БАНЯ 48.0	• 📋	0316876356FF28		Нижний -35	Верхний 35
	≡ САРАЙ	- 1	Гистерезис выхода за пороги ⑦	°C	Задержка формиро потере связи с датч	вания события о 🕜
, ⊡	Е ГАРАЖ	- Î			4	МИН
	КОНТРОЛЛЕР ∃ ВОРОТА 	Î	Калибровочное смещение ③ 0 □ Уличный датчик ③	°C	Событие на сер	вер 🕜
((y)) (%)	МодБас R46CA01 ∃ МодБас 30.0°	Î	(Отметить, что это - уличный датч Возможен только один уличный / в системе	ик. датчик		

## 6.6 Особенности настройки датчиков температуры

Настроечные параметры каждого датчика температуры предусматривают возможность автоматического контроля измеряемой им температуры и контроля исправности самого датчика. Для этих целей предназначены настройки оповещений об отклонении измеряемой температуры от заданных порогов и информирования о потере / восстановлении связи с датчиком.

Задание **Верхнего** и **Нижнего** порогов контролируемой датчиком температуры, предусматривает возможность ввода параметра *Гистерезиса* реагирования на выход за эти значения.

Кроме информирования об отклонении от пороговых значений температуры и неисправности датчика возможно запрограммировать действия с выходом контроллера, запуск сценария или выполнение команды управления.

При погрешности измерений температуры возможно корректировать показания датчика за счет калибровочного смещения показаний в диапазоне плюс / минус 5 °C.

Если датчик температуры в конфигурации Контроллера выполняет роль "уличного" в его настройке необходимо активировать параметр "Уличный датчик". В этом случае данные с погодного сервера отображаться не будут.

*Примечание:* При сетевых помехах или большом количестве контролируемых датчиков температуры рекомендуется увеличить задержку формирования события о потере связи с датчиком. Минимальное время задержки для проводных датчиков 2 минуты, для радио датчиков 10 минут.

## 7. Подключение устройств к релейным выходам

Релейные выходы Контроллера предназначены для управления исполнительными устройствами системы отопления (насосами, приводами кранов смесителей, сервоприводами и т.п.),
источниками тепла (котлами, конвекторами, тепловентиляторами и прочим отопительным оборудованием, не имеющими возможность управления по цифровой шине), а также любыми другими электроприборами.

Управление реализуется через разрыв и восстановления цепи питания электроприбора встроенным реле Контроллера.

*Примечание:* Прежде чем произвести подключение электроприборов к релейным выходам Контроллера, убедитесь, что максимальный ток потребления этих электроприборов не превышает тока, заявленного в <u>технических характеристиках Контроллера</u>. В том случае если потребляемый ток электроприборов подключаемых к релейному выходу больше, чем заявленный в характеристиках Контроллера, необходимо использовать промежуточное реле.

Схемы подключения электроприборов к релейным выходам приведены в <u>Приложении 4 Схемы</u> подключения.

#### 8. Подключение устройств к аналоговому выходу 0-10 В

Аналоговый выход 0-10 Вольт предназначен для пропорционального управления исполнительным устройством, через управляющий сигнал, представляющий собой напряжение постоянного тока, которое изменяется от нуля до десяти вольт.

	· _	Название ⊘	Устройство вывода 🕜	
	+ ДОБАВИТЬ	АВ управления ВЕНТИЛЯЦИЕЙ	Аналоговый выход №1 🛛 👻	
°	Аналоговые выходы 📀	Значения на выходе, В	Шаг значения 🕐	
((1)) .>→	АВ управления ВЕНТИЛЯЦИЕЙ	Мин 0 10 Макс Единицы измерения ⑦	0,1	
F	∃ Выход №1 R413D08 📋	Напряжение (В) 👻		
	+ ДОБАВИТЬ			

Описание настройки аналогового выхода 0-10В приведено в <u>Части 2 Разделе 15.6.2 Настройка</u> аналогового выхода

### 9. Подключение устройств к аналоговому входу 4-20 мА

Аналоговый вход 4-20 мА — предназначен для контроля датчиков и систем, результаты измерений которых определяются по величине тока выхода. Это могут быть различные датчики или системы с унифицированным выходным сигналом 4-20 мА., например датчики температуры, давления, расхода жидкости или газа, частоты вращения, силы света, информации о положении частей механизмов и другие.

Датчики 💿	Название ⊘	Номер аппаратного входа	
Датчик 🗋 💼	Датчик	Токовый вход №1 (4-20 ma) 👻	
+ добавить	Тип сенсора ⑦ Аналоговый вход	•	
Радиодатчики 868 МГц 🤇	Порог срабатывания, А ⑦	Длительность уровня, сек ⑦	
Нет доступных элементов	нижнии э 18 верхнии	Неактив 2 Актив Т	

# 10. Индикаторы работы Контроллера

После включения основного питания Контроллера стартует режим внутренней проверки цепей питания и каналов связи с сервером. В это время все три индикатора (красный, желтый и зеленый) поочередно вспыхивают. По окончании проверки зеленый и желтый индикаторы гаснут, а красный начинает вспыхивать 1 раз в сек, что свидетельствует о нормальной работе схемы питания контроллера.

В процессе работы по индикаторам можно контролировать способ и состояние связи Контроллера с сервером:

Зеленый индикатор	Желтый индикатор	Индикатор ЦШ
отвечает за связь с сервером по каналу <b>GSM</b> (мобильный интернет)	отвечает за связь с сервером по каналам <b>Ethernet / Wi-Fi</b>	отвечает за наличие связи с котлом по <b>цифровой</b> шине
одна короткая вспышка нет сигнала GSM нет связи с сервером	периодически вспыхивает - нет связи с сервером	периодически вспыхивает - связь есть
2 коротких вспышки подряд слабый сигнал GSM нет связи с сервером	горит - есть связь с сервером	горит - <mark>связи нет</mark>
<b>3 коротких вспышки подряд</b> хороший сигнал GSM нет связи с сервером		не горит - связи нет
4 коротких вспышки подряд отличный сигнал GSM нет связи с сервером		
постоянное свечение с одним затуханием очень слабый сигнал GSM связь с сервером есть		
постоянное свечение с 2-мя затуханиями слабый сигнал GSM связь с сервером есть		
постоянное свечение с 3-мя затуханиями хороший сигнал GSM связь с сервером есть		

постоянное свечение с 4-мя	
затуханиями	
отличный сигнал GSM	
связь с сервером есть	

Причины возможного отсутствия связи с сервером через мобильный интернет (GSM):

- низкий уровень сигнала из-за отсутствия (неправильного размещения) GSM антенны;
- низкий уровень сигнала оператора сотовой связи в данной местности;
- неисправна или не оплачена (заблокирована) SIM-карта;

Причины возможного отсутствия связи с сервером через Ethernet / Wi-Fi:

- отсутствие соединения с Ethernet сетью (не подключен патч-корд или не рабочий патч-корд);
- отсутствие питания на коммутаторе или Wi-Fi роутере;
- не задан настройками или указан с ошибкой адрес и пароль сети Wi-Fi.

*Примечание:* При эксплуатации Контроллера рекомендуется использовать оба канала связи с сервером: канал Ethernet/Wi-Fi является основным, а канал GSM резервным. При нарушении соединения по сети Ethernet или выключении Wi-Fi-роутера, связь автоматически переключается на мобильный интернет (GSM), а при восстановлении основного канала - переключается обратно...

### 11. Настройка конфигурации для управления Отоплением и ГВС

Конфигурация Контроллера настраивается индивидуально для каждой системы отопления и определяет алгоритмы управления ее отопительными и котловыми контурами, а также другими ее элементами. В конфигурации задаются датчики для контроля температур теплоносителя и воздуха в контурах, исполнительные устройства (насосы и смесительные узлы), отвечающие за регулирование температуры, а также режимы отопления для каждого контура.

Конфигурация Контроллера должна соответствовать проекту системы отопления в которую он интегрируется. Потому перед настройкой необходимо изучить проект системы отопления, параметры инженерных исполнительных устройств и приборов в ней использованных, а также представлять, какие задачи управления решает Контроллер.

# 11.1 Котловые и Отопительные контуры

В конфигурации Контроллера настраиваются 2 (два) типа контуров – *Котловые*, определяющие способ управления источниками тепла (котлами), и *Отопительные*, определяющие регулирование температуры в каждой зоне отопления и управление температурой ГВС.

*Котловой контур управляет котлом*: включает или выключает его при релейном управлении, или передает на плату управления котла расчетную температуру для нагрева теплоносителя при цифровом управлении.

Котловой контур применяется исключительно для управления источниками тепла – котлами, теплогенераторами, конвекторами и др. В настройках контура указывается исполнительное устройство через которое Контроллер управляет котлом (адаптер цифровой шины или реле), а также температурный диапазон, в пределах которого возможен нагрев теплоносителя в котле;

**Отопительный контур** (контур Потребителя) **регулирует температуру** в отдельной зоне отопления, поддерживает ее в пределах целевого (заданного) значения, управляя работой исполнительных устройств (насосов и смесителей), и формируя "запрос на тепло" – расчетную температуру теплоносителя, которую должен поддерживать котел для компенсации теплопотерь в контуре.

Отопительный контур создается для каждой отдельной зоны отопления: радиаторов, теплого пола, бассейна и т.п. Его настройка определяет способ терморегулирования (по воздуху, по теплоносителю, по воздуху с ПИД-регулированием), источник информации о фактической температуре теплоносителя и воздуха в контуре, а также исполнительные устройства, которыми достигается поддержание целевой температуры (насосы, краны смесителей, адаптеры цифровых шин);

*Примечание:* Если в системе несколько управляемых зон отопления, то отопительный контур создается для каждой зоны.

**Контур ГВС** – это разновидность отопительного контура со специальными возможностями управления, характерными только для горячего водоснабжения. Он поддерживает целевую температуру горячей воды в системе ГВС. Настройка параметров управления исполнительными устройствами контура ГВС зависит от типа котла и способа приготовления горячей воды в системе отопления.

Контур ГВС применяется исключительно для автоматизации функции управления приготовлением горячей воды в системе отопления.

Примечание: Если в системе отопления нет ГВС, то этот контур не создается.

#### 11.2 Параметр "запрос на тепло"

"Запрос на тепло" – параметр рассчитанный Контроллером или заданный настройкой конфигурации. Он представляет собой значение температуры теплоносителя, при достижении которой считается, что котел справится с поддержанием целевой температуры отопления в конкретном отопительном контуре. Этот параметр передается в котел как команда включения для работы на Отопление или на ГВС. Отсутствие "запроса на тепло" в отопительном контуре означает, что в данный момент нет необходимости в нагреве теплоносителя.

Котловой контур обрабатывает "запросы на тепло" от Отопительных контуров и контура ГВС. Он определяет от какого контура запрашивается температура теплоносителя *большего* значения и именно это значение передает в цифровую шину котла как расчетную температуру нагрева теплоносителя.



Параметр "запрос на тепло" применяется только в Отопительных контурах, где для поддержания целевой температуры требуется повышать температуру на подаче котла.

**Значение параметра "запрос на тепло"** зависит от выбранного алгоритма терморегулирования и устанавливается в настройке каждого Отопительного контура:

- *Максимальная температура контура* это максимальная температура теплоносителя заданная в настройке данного отопительного контура. Используется по умолчанию при управлении котлом *по цифровой шине* и способе регулирования в контуре *"по воздуху"*, а также при запросе на тепло от контура ГВС ;
- **Требуемая теплоносителя** это температура рассчитанная алгоритмом. Применяется при управлении котлом по цифровой шине и способе регулировании в контуре "по теплоносителю" или "по воздуху с ПИД-регулятором";
- **Требуемая теплоносителя + 10 (20** ... **40)** это температура рассчитанная алгоритмом с заданной "добавкой". Применяется при управлении котлом *по цифровой шине* и способе регулировании в контуре *"по теплоносителю"* или *"по воздуху с ПИД-регулятором*" при необходимости в компенсации возможных теплопотерь контура, удаленного от источника тепла;
- Фиксированная температура это произвольно заданное значение температуры теплоносителя. Нельзя выбрать значение этого параметра вне границ температурного диапазона контура.

# 11.3 Котловой контур

#### 11.3.1 Основные настроечные параметры

*Тип контура* – контур Котла.

**Термодатчик температуры теплоносителя** – источник информации о температуре теплоносителя в котле. При цифровом управлении указывается адаптер цифровой шины. При релейном управления – датчик можно не указывать, т.к. котел включает нагрев до той температуры теплоносителя, которая задана настройкой на панели котла.

**Температура теплоносителя** – температурный диапазон (верхняя и нижняя границы температуры теплоносителя) указанные в сервисном меню настройки котла. Рекомендуется установить максимальный диапазон.

**Задержка выключения нагрева** – В котловом контуре этот параметр определяет задержку фактического выключения котла после снятия "запроса на тепло".

-	Система отопления 🕐	Название 🕥		
-		КОНТУР КОТЛА BOSCH 6000		
1000	КОНТУР КОТЛА ВОЅСН 6000	Значок	Тип 💿	
	отопление РАДИАТОРЫ	Газовый котёл •	Контур котла 👻	
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	= ТЕПЛЫЙ ПОЛ 📋	Термодатчик температуры теплоносителя		
	🗉 ГОРЯЧАЯ ВОДА 🖀	BOSCH 6000 -	Не выбран •	
y s	+ ДОБАВИТЬ	Температура теплоносителя. °С (?)	Залержка выключения нагрева (?)	
F	Каскад котлов	Мин 10 72 Макс	Осек	
	Нет доступных элементов		Элементы 🕐	
20 C	+ ANDADALP	Исполнительные устройства	Выбрано: 1 🕂	

Задержка от выключения до включения котла – В котловом контуре этот параметр определяет время запрета включения котла после его выключения (помогает для защиты от тактования).

Задержка включения до выключения котла В котловом контуре этот параметр определяет время запрета выключения котла после его включения (помогает для защиты от тактования).

Исполнительные устройства – устройство, которое передает команды управления котлу:

- при цифровом управлении адаптер цифровой шины,
- при релейном релейный выход Контроллера.

≡	=	Дополнительные параметры
	Система отопления 🕐	Задержка от выключения до Не отображать на панели включения котла
1000	КОНТУР КОТЛА ВОЅСН 6000	отопления 0 мин
	РАДИАТОРЫ 📋	Задержка от включения до выключения котла Функция антизаморозка активна (?)
	🗉 ГОРЯЧАЯ ВОДА 📋	
	🗉 ТЕПЛЫЙ ПОЛ 📋	Погодозависимая автоматика 💿
(C)) >_	+ ДОБАВИТЬ	Кривая ПЗА
,¤→ ©	Каскад котлов 🕐	ПЗА НЕ ИСПОЛЬЗУЕТСЯ

### 11.3.2 Дополнительные параметры настройки

Не отображать на панели отопления – скрывает Контур котла на панели управления.

Задержка от выключения до включения котла – параметр применяется только при релейном управлении котлом и предназначен для защиты от тактования в межсезонье.

**Функция антизаморозка активна** – параметр предназначен для котлов, где нет штатной защиты от замерзания. При применении контролируется температура теплоносителя в теплообменнике и при ее снижении формируется запрос на тепло котлу.

	Релейное по	дключение	Подключение по цифровой шине		
Функция Антизаморозка	активна активна		иктивна	активна	
Состояние контура Котел	тел ВКЛЮЧЕН ОТКЛЮЧЕН		включен	ОТКЛЮЧЕН	
Тфакт ≤ Тнг	()) = Тнг		⟨уу́⟩ Нагрева нет	ं∖<br Нагрева нет	
Т <i>факт</i> ≤ +5 °С			()) = +20°C.	/ Курани и праводани и Праводани и праводани и правод И праводани и правод И праводани и пр Праводани и праводани и правод И праводани и п И праводани и пр Праводани и праводани и Праводани и праводани и правод И праводани и пр	
Тфакт > Тнг	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	⟨уу́⟩ Нагрева нет	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	/ Кагрева нет	

"запрос на тепло" котлу;

<u>{</u>

настройка – значение "запроса на тепло" от Отопительного контура;

- **Т***факт* температура в контуре Котел;
- Тиг температура нижней границы контура Котел.

Примечание: Некоторые котлы имеют встроенную функцию антизаморозки и запускают котел при снижении температуры теплоносителя до установленного в сервисных настройках значения вне зависимости от команд Контроллера. Необходимо уточнить наличие этой функции в котле в случае использования специальных жидкостей в качестве теплоносителя и установки минимальной температуры в котловом контуре ниже 5 °C.

ПЗА – параметр активирует функцию погодозависимого управления в контуре.

**ВНИМАНИЕ!!!** ПЗА в Котловом контуре как правило не используется, т.к. исключает возможность нагрева котлом теплоносителя выше значения определяемого по кривой ПЗА.

*Примечание:* ПЗА в Котловом контуре можно использовать если котел работает независимо от Отопительных контуров, когда в них не используется параметр "Запрос на тепло". Чтобы котел работал постоянно, поддерживая теплоноситель в пределах значения по кривой ПЗА, надо создать Котловой режим отопления и установить в нем признак работы "Включен постоянно".

Подробнее в Разделе 14 настоящей Документации.

### 11.4 Отопительный контур

#### 11.4.1 Основные параметры настройки

Система отопления 🔊		Название 🗇	
		РАДИАТОРЫ	
	КОНТУР КОТЛА ВОЅСН 6000	Значок	Тип 💿
	РАДИАТОРЫ 📋	Радиатор 👻	Контур потребителя 👻
		Способ терморегулирования ⑦	
ိုိုိ	ТОРИЧКИ ВОДК	по теплоносителю 👻	
	теплый пол 📋		
v v v	+ ДОБАВИТЬ	Термодатчик температуры тепл	поносителя
7	Каскал котлов @	Основной ⑦	Резервный 🕐
F	Каскад котлов	BOSCH 6000 -	Не выбран 👻
	Нет доступных элементов		
88	<b>Д</b> ЛОБАВИТЬ	Touronomino ronnonirona *0.	
<u></u>	T HODADITD	Температура теплоносителя, с ()	задержка выключения нагрева 🕜
G		Мин 15 70 Макс	0 сек
(( <u>n</u> ))		Гистерезис регулирования 🕥	Запрос на тепло
		2 °C	Требуемая t° ТН 🔹

*Тип контура* – Контур потребителя;

Способ терморегулирования – алгоритм поддержания температуры в контуре:

- **по воздуху** контур поддерживает целевую температуру воздуха в помещении, контролируя ее фактическое значение по датчику температуры, указанному в настройке.
- **по теплоносителю** в контуре поддерживается целевая температура теплоносителя в пределах границ заданного температурного диапазона работы контура. Фактическое значение температуры теплоносителя контролируется по датчику, указанному в настройке.
- по воздуху с ПИД регулятором в контуре поддерживается целевая температура воздуха в помещении за счет регулирования текущей температуры теплоносителя по ПИД алгоритму. Фактические значения температуры теплоносителя и воздуха контролируется по датчикам указанным в настройке.

*Примечание:* Фактическое значение температуры теплоносителя в контуре с ПИД регулированием может выходить за границы температурного диапазона работы контура.

**Термодатчик температуры теплоносителя** – источник информации о температуре теплоносителя в контуре. При цифровом управлении указывается адаптер цифровой шины. При релейном управления – датчик, подключенный к Контроллеру и установленный на подаче котла.

**Термодатчик температуры воздуха** – источник информации о температуре воздуха в помещении. Датчик подключенный к Контроллеру и установленный в отапливаемом контуром помещении. Если помещений несколько, то датчик должен быть установлен в помещении с наименьшей температурой.

**Температура теплоносителя, мин. макс.** – температурный диапазон теплоносителя в котором работает контур. Границы назначенного диапазона не должны выходить за пределы температурного диапазона, указанного в настройке Контура котла.

**Задержка выключения нагрева** – В отопительном контуре этот параметр определяет задержку снятия "запроса на тепло" относительно факта достижения в контуре целевой температуры

*Гистерезис регулирования* – зона нечувствительности алгоритма управления к изменению текущей температуры. Для управления по воздуху рекомендуется 0,5 - 1°C. Для управления по теплоносителю 2 - 4°C.

Запрос на тепло – смотрите пункт 11.2 Запрос на тепло – функция управления работой котла.

**Источник тепла** – параметр настройки контура, определяющий к какому именно котлу направляется "запрос на тепло". Параметр применяется только в конфигурациях с несколькими источниками тепла (котлами):

Есть Каскад и все котлы входят в его состав	"Источник тепла" = "Каскад",
Есть Каскад и отдельные котлы. В конфигурации есть Котловые режимы.	"Источник тепла" = "Все теплогенераторы"
Нет Каскада, нет Котловых режимов	"Источник тепла" = котел которому адресован запрос от контура.
Все котлы работают параллельно	"Источник тепла" = "Все теплогенераторы"

**Исполнительные устройства** – Реле, Насосы и Краны смесителей, отвечающие за регулирование температуры теплоносителя в контуре.

#### 11.4.2 Дополнительные параметры настройки

	Система отопления ⑦	Дополнительные параметры
	КОНТУР КОТЛА BOSCH 6000	Не выбран
	Е РАДИАТОРЫ 📋	🔲 Выключать при работе ГВС 🕜 🛛 🗹 Не снимать запрос тепла ⊘
۵ ۲.۰۰ ۲.۰۰	ГОРЯЧАЯ ВОДА 📋	Не отображать на панели Переход зима/лето ⑦
	🛛 ТЕПЛЫЙ ПОЛ 🔋	Виртуальная температура 🕜 теплоносителя
	+ ДОБАВИТЬ	50 °C
	Каскад котлов 🕐	Погодозависимая автоматика
	Нет доступных элементов	Кривая ПЗА ПЗА не используется

**Использование внешнего термостата** – способ управления отопительным контуром внешним дискретным сигналом от стороннего устройства. Для применения такого управления необходимо указать к какому входу контроллера подключен выходной сигнал Датчика с типом сенсора "Комнатный термостат".

Датчики 💿	Название 🕐	Номер аппаратного входа ⑦
Термостат бассейна	Тип сенсора ⑦	DX/DBIX N= I
	Комнатный термостат	

• Если в конфигурации контроллера данный контур создан для <u>управления котлом по</u> <u>запросу от блока автоматики бассейна, вентиляционной установки</u> или другой подобной системы, то надо выбрать, что сигнал термостата управляет "Запросом тепла"

Система отопления 📀			Исполнительные устройства	НЕ ВЫБРАНО +
≡ контур отопления	Ū	Î		
Бассейн	Ū		Использование внешнего	Сигнал термостата управляет
≡ котёл		Î	термостата	<ul> <li>Запросом тепла</li> </ul>
≡ ГВС		Î		🔘 Активностью контура

Контроллер, по появлению на указанном входе дискретного сигнала, формирует "запрос на тепло" котловому контуру, равным *Целевой температуре* указанной в настройке этого контура:

ОТОПИТЕЛЬНЫЕ КОНТУРЫ				
контур отопления 🎄	Д Бассейн	\$	ГВС	\$
Сейчас 33.5° 🚿 💧	Сейчас 56.6° 🖄		Сейчас 52.8° %	۵
Целевая 45° 🕃	Целевая <mark>56</mark> °	T	Целевая <b>53°</b>	B
	§ 56.6° → 56°		Интерфейс ЦШ	
температура отопления	температура коллектора	а –		
- +	- +		+	
· · ·				

*Примечание:* Значение настроечного параметра "Запрос на тепло" для контура управляемого таким способом надо указать "*Требуемая теплоносителя*".

• Если в конфигурации контроллера данный контур управляется установленным в отдельной зоне отопления <u>двухпозиционным комнатным термостатаом</u>, то надо выбрать, что сигнал термостата управляет "Активностью контура"

Система отопления 💿		Исполнительные устройства		НЕ ВЫБРАНО +	
контур отопления	6				
≡ Бассейн	0 🗊	Использование внешнего	ры	игнал термостата управляет	
≡ котёл	0 🗎	термостата	() () () () () () () () () () () () () (	) Запросом тепла	
≡ ГВС				• Активностью контура	

Контроллер, по сигналу от комнатного термостата, формирует "запрос на тепло" котловому контуру, равным значению *верхней границы температуры теплоносителя*, указанной в настройке отопительного контура и управляет работой исполнительных устройств, назначенных для регулирования температуры:

Система отопле	ения	
≡ контур отопления	6	Термодатчик температуры теплоносителя
≡ Бассейн	0 🗊	Основной         Резервный         Резервный         Основной         Основной         Основной         Основный         Основный
≡ котёл	0 🕯	Температура теплоносителя, °С ⑦
≡ FBC		Мин 15 80 Макс

Схема подключения комнатного термостата приведена в Приложении 4, Раздел 4.7.3

**Выключать при работе ГВС** – при выборе данного параметра действует приоритет контура ГВС над алгоритмом работы данного отопительного контура и "запрос на тепло" от него временно не принимается во внимание. Исполнительные устройства контура при этом работают следующим образом:

- если контур прямой насос в нем останавливается;
- если контур смесительный с насосом насос останавливается, а смеситель неподвижен;
- если контур смесительный без насоса смеситель закрывается.

*Не снимать запрос тепла* – параметр запрещает снимать "запрос на тепло" от данного контура к котловому контуру даже при отсутствии необходимости в нагреве. Исключение только если:

- Отопительный контур находится в состоянии "Выключен";
- Отопительный контур находится в режиме "Лето";
- Расчетная температура теплоносителя в отопительном контуре оказалась ниже минимальной температуры (нижней границы диапазона) теплоносителя этого контура.

**Переход** зима-лето – параметр включения автоматического перехода отопительного контура в "Летний режим" при превышении температуры на улице заданного порогового значения.

Не отображать на панели отопления		🕨 🗹 Переход зима/лето 🕜	
Порог температуры для перехода в летний режим	?	Виртуальная температура теплоносителя	0
5	°C	50	°C

Как только фактическое значение уличной температуры опустится ниже заданного температурного порога, контур возобновит работу в ранее установленном режиме.

Для контроля уличной температуры можно использовать данные с погодного сервера, получаемые Контроллером из интернет.

Подробнее о настройке уличной температуры с погодного сервера смотрите в <u>Части 2 Раздел 6.5</u> Использование уличной температуры с погодного сервера.

Запрос тепла при неисправном датчике температуры воздуха – параметр, используемый в отопительных контурах, где задано регулирование "по-воздуху" или "по воздуху с ПИД". Применяется автоматически при следующих событиях:

- при неисправности датчика температуры воздуха назначенного для управления в контуре;
- при снижении фактической температуры теплоносителя в контуре ниже границы заданной настройкой этого контура.

Дополнительные параметры			
Использование внешнего термост	ата 🕐		
Не выбран	-		
🔲 Выключать при работе ГВС 🤅	D		
Не отображать на внешней панели			
🔲 Переход зима/лето ⊘			
Запрос тепла при неисправном	0		
50 - °C			

*Примечание:* Если в контуре включено управление с учетом ПЗА, то значение "запроса на тепло" определяется по выбранной кривой ПЗА. Описание работы ПЗА приведено <u>Части 2.</u> <u>Раздел 12 Погодозависимое регулирование (ПЗА)</u>.

**ПЗА** – параметр активирует функцию погодозависимого управления в контуре. Подробнее в разделе 12 настоящей Документации.

#### 11.4.3 Прямой отопительный контур

Контур, в котором в качестве исполнительного устройства используется только Насос, называется Прямым. Контроллер сравнивает целевую температуру, заданную действующим режимом отопления, с фактической температурой, измеряемой основным датчиком контура, и с учетом гистерезиса переключает реле управления Насосом.

Примечание: В Прямом контуре нельзя применять управление по воздуху с ПИД регулированием.

#### 11.4.4 Смесительный отопительный контур

Контур, в котором регулирование температуры теплоносителя осуществляется за счет работы смесительного узла называется смесительным. Необходимое смешивание горячего потока от котла и остывшего из обратки выполняет Контроллер, управляя импульсным или аналоговым сервоприводом. Смесительный узел поддерживает заданную температуру в контуре и отвечает за циркуляцию, поэтому в его исполнительные устройства обязательно входит насос.

Импульсными сервоприводами в отоплении принято называть приводы, которые имеют отдельные контакты для открывания и закрывания и управляются подачей напряжения питания на один из этих контактов. Аналоговыми называют те, которые имеют вход управления 0-10В.

Пример импульсных сервоприводов – ESBE ARA661, Meibes M66341.

Пример аналогового сервопривода – Valtec VT.TE3061.

**ВНИМАНИЕ!!!** От смесительного контура "запрос на тепло" к котловому контуру не снимается, и насос, используемый в качестве исполнительного устройства контура, работает постоянно, отключаясь только в том случае, если:

- смесительный контур выключен;
- смесительный контур находится в режиме "Лето";
- расчетная температура теплоносителя в смесительном контуре приняла значение ниже минимальной границы, указанной в настройке температурного диапазона этого контура.

Такая логика работы необходима для обеспечения на входе смесительного узла потока теплоносителя со стабильным значением температуры. В этом случае сервопривод будет регулировать температуру теплоносителя точнее, не вызывая сильных колебаний температуры на выходе смесительного узла.

#### 11.4.5 Особенности работы Смесительного контура при разных способах регулирования

"Управление по теплоносителю" – Контроллер анализирует разницу между Целевой и фактической температурой в контуре и посылает импульсы управления сервоприводу для движения в нужном направлении. Начальные длительность и период импульсов задаются в настройках. Эти настройки определяет инерционность системы управления. Чем меньше время импульса тем инерционнее система управления.

Гистерезис для контура, управляемого по теплоносителю, не рекомендуется делать менее 2-х градусов. При меньшем гистерезисе привод будет постоянно открывать/закрывать кран смесителя.



"Управление по воздуху" – Контроллер анализирует разницу между Целевой и фактической температурой воздуха в помещении и посылает импульсы управления сервоприводу для движения в нужном направлении.

Настройка параметров привода крана смесителя должна учитывать большую тепловую инерционность помещения, особенно если контур предназначен для регулирования температуры теплого пола. Поэтому инерционность контура управления тоже должна быть большой, а управляющее воздействие – малым. Это достигается тем, что период импульсов настраивается гораздо больше шага импульса.



*"Управление по воздуху с ПИД регулированием теплоносителя"* – Контроллер анализирует разницу между Целевой и фактической температурой воздуха в помещении и посылает импульсы управления сервоприводу для движения в нужном направлении.



При этом контролируются показания датчиков воздуха в помещении и теплоносителя в контуре за смесительным краном, а алгоритм постоянно корректирует фактическую температуру теплоносителя так, чтобы поддерживать воздух в заданном значении.

*Примечание:* При таком регулировании "гистерезис" применяется не к температуре воздуха, а к температуре теплоносителя. Расчетная температура теплоносителя будет регулироваться с учетом гистерезиса, то есть колебаться относительно номинальной на величину гистерезиса.

**ВНИМАНИЕ!!!** Режим управления "По воздуху с ПИД-регулированием" предназначен для использования в инертных системах отопления, когда переходный процесс изменения температуры плавный и занимают значительное время.

Дополнительные параметры	
Использование внешнего термостата	0
Не выбран	▼
🔲 Выключать при работе ГВС ၇ 🛛 🗹 Не снима	ать запрос тепла

Запрос тепла в этом режиме рекомендуем не снимать, поскольку он рассчитан на непрерывное регулирование. Для этого предназначена настройка "Не снимать запрос тепла".

# 11.5 Контур ГВС

Настройка параметров контура ГВС зависит от источника тепла (котла) и способа приготовления горячей воды в системе отопления.

Котел с проточным теплообменником или БКН подключенным к котлу



БКН за гидрострелкой, насосом загрузки бойлера управляет ZONT



#### 11.5.1 Котел с проточным теплообменником или с бойлером, подключенным к котлу

Настройка применяется когда в системе отопления задача приготовления горячей воды выполняется котлом, управляемым Контроллером по цифровой шине.

Управление нагревом ГВС полностью выполняет автоматика котла в штатном режиме работы. Контроллер только передает в цифровую шину котла целевую температуру нагрева горячей воды, заданную действующим режимом отопления для контура ГВС.

Контроль фактической температуры горячей воды выполняет автоматика котла по показаниям штатного датчика или датчика бойлера.

Настройка контура ГВС в конфигурации Контроллера заключается в активации параметра "Котел с проточным теплообменником или бойлером подключенным к котлу". Исполнительным устройством такого контура должен быть указан "Адаптер ЦШ".

K	КП Лесная подкова -			
< 17	74	08:18 🔧 🗙		
	Отоплени	1e • FBC		
Назван	ие 🕜			
ГВС				
Иконка	1			
S, LE	3C	+ ×		
Тип (?	)			
Конт	ур ГВС	•		
		0		
		Элементы (?)		
Испо устро	лнительные ойства	ВЫБРАНО: 1 +		
Доп	олнительны	е параметры		
٦ŀ	le отображать н	на внешней панели		
ŀ	(отёл с проточн	ым		
🗹 т	еплообменник	ом или бойлером		
Г	юдключенным	к котлу		

08:35

 $+ \times$ 

Второй

контур

 $\bigcirc$ 

КП Лесная подкова

Viessmann Максимальный уровень модуляции ⑦

 $\bigcirc$ 

Отслеживать параметры 🔊

174

100

Иконка

Уличный

латчик

*Примечание:* Для котлов BAXI LUNA, BAXI NUVOLA, Buderus Logamax U072, Bosch 6000 в настройках "Адаптера ЦШ" рекомендуется включать опцию "Второй контур".

### 11.5.2 БКН за гидрострелкой, насосом загрузки бойлера управляет ZONT

Настройка применяется когда контроль температуры горячей воды и управление насосом загрузки отдельного БКН осуществляет непосредственно Контроллер (использованы температурный датчик ZONT и управляемый выход).

Настройка подходит для любого способа управления котлом: релейного или по цифровой шине.

В конфигурации Контроллера задается отдельное исполнительное устройство "насос загрузки бойлера", а на вкладке Отопление задаются параметры работы контура -"Запрос на тепло". "Датчик температуры *ГВС*". "Исполнительные устройства" "Гистерезис u регулирования".

Выбор значения параметра "Запрос на тепло" должен обеспечивать быстрый нагрев воды в бойлере. Рекомендуемое значение "Максимальная температура контура _ котла". Включение насоса загрузки бойлера и нагрев воды до целевого значения осуществляется с учетом гистерезиса, заданного в настройках контура. Рекомендуемое значение гистерезиса 5°С.

КП Лесная подкова	-	
〈 174	08:47	× ،
Отопление • ГВС	;	
Термодатчик темпера	гуры ГВС	
Основной 🕐		
ГВС		•
Резервный ⊘		
Не выбран		-
0		сек
истерезис регулирования (?	)	
5		°C
Запрос на тепло		
Максимальная температура	а контура	-
Эг	іементы 🕜	

ВНИМАНИЕ!!! В контуре ГВС с БКН за гидрострелкой гистерезис

поддержания горячей воды отслеживается только в сторону уменьшения от целевой температуры. Т.е. если целевая температура ГВС – 50°С, а гистерезис – 5°С, то запрос тепла в контур котла будет отправляться при температуре горячей воды 45°С и сниматься при температуре 50°С.

#### 11.5.3 Функция "Антилегионелла"

ВНИМАНИЕ!!! Функция применяется только для конфигурации "БКН за гидрострелкой".

Функция "Антилегионелла" предназначена для предотвращения развития вредоносных бактерий легионеллы в бойлере косвенного нагрева за счет нагрева и поддержания воды в бойлере при

температуре 65 °C в течении 15 минут. Для работы функции составляется расписание ее включения.

### 12. Погодозависимое регулирование (ПЗА)

### 12.1 Алгоритм работы функции

Регулирование с ПЗА может быть применено в любом Отопительном контуре кроме контура ГВС. Управление с ПЗА – это способ внесения поправки в расчет требуемой температуры теплоносителя в зависимости от изменения уличной температуры (погоды). Основой алгоритма ПЗА является использование определенных зависимостей температуры вне дома и температуры теплоносителя, т.н. "Кривых ПЗА"

Для использования ПЗА необходимы показания уличного датчика и данные о фактической температуре теплоносителя в контуре.

*Примечание:* Информацию об уличной температуре можно получать от любого датчика с признаком "Уличный датчик", или использовать информацию с погодного сервера. Чтобы использовать температуру с погодного сервера необходимо предварительно настроить местоположение контроллера и проверить, что ни один из датчиков температуры не имеет признака "Уличный датчик".

При регулировании с ПЗА "запрос на тепло" от отопительного контура к котлу формируется автоматически в соответствии с данными из выбранной "Кривой ПЗА".

Так как все кривые заданы для целевой температуры воздуха +20°С, ввод в контуре целевой температуры другого значения, будет сдвигать кривую ПЗА либо вверх (при увеличении цели), либо вниз (при ее уменьшении).

Поэтому для контура с ПЗА управляемого "по теплоносителю", в качестве цели надо указывать +20°С, чтобы получить в нем теплоноситель, рассчитанный по выбранной кривой.

Если в процессе работы такого контура возникает необходимость получить теплоноситель более высокой или низкой температуры, то для этого достаточно изменить целевую температуру в панели этого контура в большую или меньшую сторону относительно предустановленных +20°C.





# 12.2 Особенности регулирования в отопительном контуре с ПЗА

Значение параметра "запрос на тепло" в отопительном контуре с ПЗА может быть задано только "*Требуемая теплоносителя*" или "*Требуемая теплоносителя+XX*". Фактическая температура теплоносителя в таком контуре будет определяться выбранной кривой и заданным способом регулирования:

По воздуху	По воздуху с ПИД	По теплоносителю
	<b>Ттн</b> вычисляется по алгоритму ПИД, но не может превышать <b>Тпза</b>	
Ітн = Іпза	если Ттн ≥ Тпза, то Ттн = Тпза	Ттн = Тпза

**По воздуху:** достижение целевой температуры воздуха получается за счет нагрева теплоносителя до значения вычисленного по кривой ПЗА. Запрос на тепло снимается, если датчик воздуха показывает больше, чем целевая температура, заданная режимом отопления + гистерезис.

**По воздуху с ПИД:** достижение целевой температуры воздуха получается за счет плавной подстройки температуры теплоносителя по алгоритму ПИД-регулирования. Кривая ПЗА в данном случае только ограничивает максимальное значение расчетной температуры.

**По теплоносителю:** в контуре поддерживается температура теплоносителя равная значению температуры вычисленной по кривой ПЗА. Запрос на тепло снимается, если датчик теплоносителя показывает больше, чем температура ПЗА + гистерезис.

Примечание: Если в контуре выбрано регулировании "по воздуху" или "по воздуху с ПИД", то при необходимости быстрого нагрева помещения надо указать при какой разнице между фактической и целевой температурами отключать ПЗА, чтобы котел мог работать на полную мощность.



### 12.3 ПЗА в котловом контуре

ПЗА в Котловом контуре не настраивается. Исключение, когда есть необходимость независимой постоянной работы котла с нагревом теплоносителя в зависимости от погоды. Для этого создается Котловой режим в котором надо установить признак работы для котла "Включен постоянно", а во всех Отопительных контурах не использовать параметр "Запрос на тепло".

Подробнее в разделе 14 настоящей Документации.

### 12.4 Подбор и задание кривых ПЗА



В любом отопительном контуре, кроме контура ГВС, можно задать кривую ПЗА. Выбирается либо одна из стандартных кривых (предустановлены в заводской конфигурации Контроллера), либо настраивается индивидуальная кривая ПЗА (по графику или табличным значениям).

График для кривой ПЗА строится с помощью выделения точки двойным кликом и перетягивании ее относительно осей координат в желаемое место.

Таблица заполняется по произвольным значениям соответствия температуры улицы температуре теплоносителя.

Если необходимо в каждом отопительном контуре использовать индивидуальную кривую ПЗА, то необходимо сначала создать необходимое количество кривых, дать им названия, а потом, уже при настройке каждого контура выбирать нужную:





### 13. Каскад котлов

Каскад – это совместное гидравлическое и электрическое подключение нескольких котлов, объединенных единой системой управления и работающих для обеспечения нагрева теплоносителя для одного и того же объекта. Каскадное управление котлами позволяет эффективно обеспечивать зоны отопления необходимым теплом, а также продлить срок службы котлов за счет распределения нагрузки.

### 13.1 Типы и стратегии каскадов

Контроллер может управлять каскадом из нескольких котлов. Количество котлов в каскаде не имеет программного ограничения, а максимальное количество подключаемых котлов зависит только от ресурсных возможностей процессора Контроллера и объема памяти занятого конфигурацией.

Принцип работы каскада заключается в разделении суммарной тепловой нагрузки между котлами, и включении их в нагрев только по потребности (наличию запроса от отопительных контуров). При этом каждый котел представляет свою «ступень» в общей мощности системы. Контроллер постоянно отслеживает температуру подачи теплоносителя в систему отопления по отдельному датчику в гидрострелке, температура на котором должна быть достаточной для удовлетворения запросов от отопительных контуров и находиться в границах "Зоны гистерезиса".

По результатам контроля определяется, какие ступени системы (котлы) следует включать для поддержания заданной температуры.

В каскаде котлы с задаваемой периодичностью меняются ролями (Основной / Ведомый), поэтому должны быть одинаковые по способу подключения к контроллеру и по мощности. Поэтому каскад собирают или из котлов управляемых по цифровой шине – **МОДУЛИРУЮЩИЙ каскад** или из котлов управляемых релейно – **РЕЛЕЙНЫЙ каскад** 

При настройке каскада необходимо придерживаться одной из стратегий, исходя из типа котлов и особенностей гидравлической схемы системы отопления.

#### <u>Стратегии для традиционных котлов</u> (КПД снижается при уменьшении уровня модуляции):

#### Позже включить, раньше выключить

Включение ведомого котла выполняется с большой задержкой, тем самым Ведущий котел долго работает на максимальной мощности. При снижении потребности в мощности, ведомый котел отключается как можно раньше. Таким образом достигается оптимальное количество одновременно работающих котлов на максимальной мощности и наименьшее время работы ведомого котла.

### Позже включить, позже выключить

Включение и выключение ведомого котла выполняется с большой задержкой. Применяется в случае необходимости обеспечения минимального количества операций включения горелок котлов. Например в системах с большим разбором тепла.

### Стратегия для конденсационных котлов (КПД растет при уменьшении уровня модуляции):

#### Раньше включить, позже выключить

Ведомый котел включается с небольшой задержкой относительно старта ведущего, а выключается наоборот с большой задержкой. Таким образом котлы могут работать на минимальной модуляции, обеспечивающей нагрев теплоноситель по потребности.

#### 13.2 Настроечные параметры модулирующего каскада

- Задержка добавления котла в каскад время, через который стартует ведомый котел после запуска ведущего. Задается с учетом возможного кратковременного снижения температуры на датчике гидрострелки при переходных процессах (смены режима отопления, включения котла на ГВС и т.п.)., т.е. чтобы исключить ложный запуск ведомого котла.
- Задержка удаления котла из каскада время, через который отключается ведомый котел после достижения температурой в гидрострелке зоны гистерезиса. Задается с учетом возможного тактования ведомого котла при переходных процессах. Чем стабильнее поддерживается температура в гидрострелке, тем большее значение может принимать этот параметр.
- Гистерезис регулирования дельта между уставкой каскаду и температурой в гидрострелке + 1 или 2 градуса. Если температура теплоносителя находится в зоне аистерезиса считается, что обеспечивается необходимая для всех отопительных контуров тепловая мощность и включать ведомый котел нет необходимости. Гистерезис зависит от конфигурации системы отопления и вычисляется опытным путем при ПНР. Для расчета гистерезиса необходимо в любом из отопительных контуров, указать источником тепла любой из котлов каскада и задать условия для формирования к нему «запроса на тепло». Когда температура теплоносителя котла достигнет расчетного значения (уставки) и модуляция перестанет увеличивается зафиксировать температуру на датчике гидрострелки. К дельте этих температур нужно прибавить 1-2 градуса и это будет величина гистерезиса.

Название 🕐		Период ротации котлов	
Каскад котлов		1	сутки
Задержка добавления котла в каскад	0	Задержка удаления котла из каскада	0
20	мин	10	МИН
Задержка включения/отключени котла	^я ()	Гистерезис регулирования ⑦	
10	мин	10	°C
Геплоноситель системы ⑦ Теплоноситель	•	Иодулирующий каскад 🕜	
Учитывать модуляцию горелок	0	Предпочтительная модуляция горелки	0
	-	100	%
		Действия ⑦	

### Дополнительные параметры для котлов с данными модуляции в ЦШ

- Учитывать модуляцию горелок Алгоритм управления каскадом по результату контроля <u>суммарной модуляции</u> всех работающих котлов каскада принимает решение целесообразно или нет отключать ведомый котел.
   Например: в каскаде 2 котла, температура находится в зоне гистерезиса и суммарная модуляция <u>более 100%</u>. Ведомый котел не отключается и параметр "Задержка удаления котла из каскада" не применяется. (Зачем ведомый котел выключать, если мощности ведущего точно не хватит и ведомый потребуется опять включать). И наоборот если суммарная модуляция <u>менее 100%</u>. ведомый котел сразу отключается. (Зачем работать, если он явно избыточен в данных условиях).
- Предпочтительная модуляция Параметр задается в процентах и предназначен для ограничения мощности котлов в каскаде.
   Например : задана модуляция 50%, ведущий котел ее достиг, но время добавления ведомого еще не наступило. Чтобы мощность ведущего котла не оказалась превышена, алгоритм запустит ведомый котел.

### Алгоритм работы модулирующего каскада



По запросу на тепло от любого из отопительных контуров, стартует ведущий котел и одновременно с этим начинается отсчет Тд времени задержки на включение ведомого котла.

Если за это время температура в гидрострелке успевает достигнуть зоны гистерезиса – ведомый котел не запускается и продолжает работать только ведущий. Если же не успевает, то ему в помощь запускается ведомый котел.

Одновременно с тем, как температура в гидрострелке попадает в Г зону гистерезиса начинается обратный отсчет Ту времени выключения ведомого котла, по истечении которого он выключается.

Пока температура находится в зоне гистерезиса ведомый котел не включается. Когда она снижается ниже границы – начинается новый отсчет добавления в каскад ведомого котла.

### 13.3 Настроечные параметры релейного каскада

• Задержка добавления котла в каскад – время, через который стартует ведомый котел после запуска ведущего. Задается с учетом возможного кратковременного снижения температуры на датчике гидрострелки при переходных процессах (смены режима

отопления, включения котла на ГВС и т.п.)., т.е. чтобы исключать ложный запуск ведомого котла.

- Задержка удаления котла из каскада время, через который отключается ведомый котел после достижения температурой в гидрострелке *зоны гистерезиса*. Задается с учетом возможного тактования ведомого котла при переходных процессах. Чем стабильнее поддерживается температура в гидрострелке, тем большее значение может принимать этот параметр.
- Гистерезис регулирования дельта между уставкой каскаду и температурой в гидрострелке + 1 - 2 градуса. Зона гистерезиса – это интервал температуры в гидрострелке при достижении которого гарантировано достаточно тепла для всех отопительных контуров (рассчитывается также как и для модулирующего каскада.
- Задержка включения / отключения котла параметр только для каскада из котлов, управляемых релейным способом. Это время, через которое выключается и затем включается ведомый котел если температура в гидрострелке превысит зону гистерезиса. Рекомендуемое значение 1-2 минуты.

Название 🕜		Период ротации котлов	
Каскад котлов		1	сутки
Задержка добавления котла в каскад	0	Задержка удаления котла из каскада	0
20	мин	10	мин
Задержка включения/отключени: котла	я (?)	Гистерезис регулирования ③	
10	мин	10	°C
Теплоноситель системы		🔲 Модулирующий каскад ⑦	
Теплоноситель	•		
Учитывать модуляцию горелок	0		
		Действия ⑦	
Список котлов в группе		ВЫБРАНО: 2 +	

#### Алгоритм работы релейного каскада



Отличие в работе такого каскада только в том, что при релейном управлении котлами в принципе не существует расчетной температуры (уставки) каждому котлу – они всегда включаются в нагрев на разрешенный сервисной настройкой максимум. Алгоритм каскада формирует расчетную температуру по фактическому запросу на тепло от отопительных контуров имеющему большее значение и, при условии что она попадает в зону гистерезиса, поддерживает ее с точностью +/- 3 градуса.

#### 13.4 Общие параметры для настройки каскада

- Период ротации котлов периодичность смены ролей котлов в каскаде (Ведущий / Ведомый). Происходит в 3 часа ночи.
- **Теплоноситель системы** источник информации о температуре подачи теплоносителя в систему отопления это датчик температуры, подключенный к Контроллеру и расположенный за гидроразделителем.
- Список котлов в группе параметр определяющий порядок включения котлов в каскаде. При первом запуске (после настройки каскада) Ведущим становится котел с номером 1. В дальнейшем смена ролей по ротации котлов происходит автоматически через период ротации.

*Примечание*: Для правильной работы каскада, в отопительных контурах нужно параметр "Источник тепла" устанавливать – "Каскад".

*Примечание:* Ведущий в каскаде котел работает всегда и может выключаться, только когда от отопительных контуров нет «запроса на тепло».

Примечание: Алгоритм каскада контролирует и учитывает в своей логике фактическое время добавления (Тд) и удаления (Ту) ведомых котлов, т.н. «память каскада». Практически это означает, что если запрос на тепло с каскада был снят в момент когда ведомые котлы не отработали время удаления или добавления, то при следующем запросе тепла они стартуют вместе с ведущим. Поэтому мы настоятельно рекомендуем проверять реакцию котлов на запрос тепла при ПНР до настройки каскада.

#### 14. Котловые режимы

Если в конфигурации Контроллера несколько источников тепла и есть необходимость управления их работой по разному: запускать по расписанию или по схеме резервирования, то необходимо создавать Котловые режимы работы.



### 14.1 Варианты работы котлов в Котловых режимах

Котловой режим включает в себя все котлы из конфигурации контроллера.

*Примечание:* Если в конфигурации есть каскад и котел (котлы) не входящий в его состав, то Котловой режим состоит из каскада как отдельного источника тепла и этого котла (котлов).

#### В конфигурации контроллера Котловые режимы настраиваются в "Режимах отопления":

Отопление	Котловые режимы 💿
1000 Контуры отопления	≡ Котловой режим
Режимы отопления	+ ДОБАВИТЬ

Вариант работы в Котловом режиме задается каждому источнику тепла (котлу):

- Отключено котел всегда выключен;
- Включено по запросу котел в ожидании запроса тепла и включится при его появлении;
- Включено постоянно котел включен и работает постоянно;
- Резере котел в ожидании команды на включение по алгоритму резервирования.

Режимы отопления ⑦	Название ⑦ Котловой режим	Цвет
+ ДОБАВИТЬ	Иконка Без значка —	Не отображать на панели ⑦ отопления
Котловые режимы 💿 Котловой режим 📋 📋	Настройки отопи	 тельных контуров
+ ДОБАВИТЬ	Газ.котёл	<b>i</b> ^
	Контур отопления 🕥	Вариант работы 🕥
	Газ.котёл 👻	Включено по запросу 👻
	Эл.котёл	<b>i</b> ~

У каждого котла в конфигурации контроллера должен быть задан свой датчик температуры теплоносителя. Для котла управляемого по ЦШ этим датчиком является адаптер цифровой шины через который контроллер подключен к котлу. Для Каскада в котловом режиме назначается датчик температуры теплоносителя установленный на гидрострелке.

В настроечных параметрах отопительных контуров, при наличии Котлового режима отопления, параметр "Источник тепла" должен быть задан "Все теплогенераторы".

*Примечание:* Если в конфигурации контроллера создан один Котловой режим, то его можно скрыть. Для этого в настроечных параметрах режима нужно выбрать опцию "не отображать на панели отопления".

*Примечание:* Если все котлы в конфигурации контроллера входят в состав каскада или все котлы работают одновременно по запросу, то Котловой режим можно не создавать.

## 14.2 Настройка запуска резервного котла

Если в системе отопления есть резервный котел, то можно создать Котловой режим для запуска этого котла при отказе (выключении) или недостатке мощности основного котла.

Для этого отслеживается текущая температура подачи в систему отопления (обычно по датчику гидрострелки) и при ее снижении более величины заданного гистерезиса формируется команда запуска резервного котла.

Режимы отопления	К Режимы отопления • К Х
Режимы отопления 🗇	Режим с резервным колюм.
Комфорт	Значок (இ) Персональный 🗸
Эконом	Не отображать на панели отопления ⑦
	Датчик теплоносителя системы
ыключен	Датчик теплоносителя дом. 👻
+ ДОБАВИТЬ	Задержка включения резерва
Котловые режимы 🗇	10 мин
ежим с резервным котлом.	Гистерезис регулирования (?)
	5 °C
+ ДОБАВИТЬ	Настройки отопительных контуров
	Основной котел 📋 🗸
	Резервный котел. 📋 🗸
	+ ДОБАВИТЬ
СОХРАНИТЬ	Сохранить

Таким образом пока температура теплоносителя на гидрострелке находится *в зоне гистерезиса регулирования* считается, что обеспечивается необходимая для всех отопительных контуров тепловая мощность и запускать резервный котел не нужно. При снижении температуры и выходе ее за нижнюю границу зоны гистерезиса, начинается отсчет времени *задержки включения резерва* и, после его истечения – запуск резервного котла. При достижении температуры на гидрострелке расчетного значения (величины "запроса на тепло"), резервный котел выключается.

Котлам в режиме для запуска резервного котла назначаются следующие варианты работы:

Основной котел	Î	^	Резервный котел.	Î	^
Контур отопления 🕥			Контур отопления		
Основной котел		•	Резервный котел.		-
Вариант работы			Вариант работы 🕥		
Включено по запросу		-	Резерв		•

Настроечные параметры для котлового режима запуска резервного котла:

**Датчик теплоносителя системы** – датчик по которому отслеживается температура подачи теплоносителя в систему отопления. Физически это датчик, подключенный ко входу Контроллера и расположенный за гидроразделителем.

Задержка включения резерва – интервал времени, через который запускается резервный котел после снижения температуры на датчике теплоносителя системы ниже заданного гистерезиса. Интервал задается с учетом возможного кратковременного падения температуры из-за временных переходных процессов (смена режима отопления, включения ГВС и т.п.) и должен исключать ложный запуск резервного котла.

**Гистерезис регулирования** – тепловые потери между расчетной температурой (уставкой) основного котла и фактической температурой на подаче теплоносителя в систему отопления (датчиком гидрострелки). Гистерезис зависит от конфигурации системы отопления и вычисляется опытным путем при ПНР. Для расчета гистерезиса необходимо в любом из отопительных контуров, указать источником тепла основной котел системы отопления и задать условия для формирования к нему «запроса на тепло». Когда температура теплоносителя котла достигнет расчетного значения (уставки) и модуляция перестанет увеличивается – зафиксировать температуру на датчике гидрострелки. К дельте этих температур нужно прибавить 1-2 градуса и это будет величина гистерезиса.

*Примечание:* Если по роли резервного котла он должен включаться исключительно при отказе основного котла, то рекомендуется задавать гистерезис большего значения, 15-20 гр., тем самым исключая его запуски при переходных процессах смены режимов отопления, запуска ГВС и т.п.

**ВНИМАНИЕ!!!** В настроечных параметрах контура резервного котла нельзя в качестве датчика температуры теплоносителя назначить датчик теплоносителя основного котла. Если это допустить, то алгоритм запуска резервного котла будет работать неправильно.

### 14.3 Настройка запуска котлов по расписанию

Для запуска котлов по расписанию необходимо создать **Котловой режим**, где каждому котлу составить индивидуальное расписание его работы:

• Дневное расписание – котел включается по дневному расписанию;

Контур отопления		Вариант работы	
Эл.котёл	•	Дневное расписание	•
выкл 🗸			
01 ⁰⁰ 03 ⁰⁰ 05 ⁰⁰ 07 ⁰⁰ 09 ⁰⁰ 11 ⁰⁰	13 ⁰⁰ 15 ⁰ ВЫКЛ	⁰ 17 ⁰⁰ 19 ⁰⁰ 21 ⁰⁰ 23 ⁰⁰	

• Недельное расписание – котел включается по недельному расписанию;

Контур отопления	Вариант работы
Эл.котёл	Недельное расписание 👻
ВыКЛ   О100 0300 0500 0700 0900 1100 1300	⁰ 15 ⁰⁰ 17 ⁰⁰ 19 ⁰⁰ 21 ⁰⁰ 23 ⁰⁰
пн ПО ЗАПРОС	У
вт ВЫКЛ	
ср ПО ЗАПРОС	Σ <b>Υ</b>
чт ВЫКЛ	
пт ПО ЗАПРОС	У
сб ВЫКЛ	
вс ПО ЗАПРОС	y y

• Интервальное расписание – котел включается по интервальному расписанию.



#### 14.4 Настройка параллельного запуска всех котлов

Если алгоритмом работы системы отопления предусмотрен одновременный запуск всех котлов по "запросу на тепло" от отопительных контуров, то в конфигурации контроллера Котловой режим не задается, а в настроечных параметрах отопительных контуров параметр "Источник тепла" задается – "Все теплогенераторы".

### 14.5 Настройка независимого управления котлами

Если конфигурацией Контроллера предусмотрены независимые зоны отопления, теплоноситель в которые подается разными источниками тепла, то в настроечных параметрах отопительных контуров данных зон параметром "Источник тепла" задается конкретный котел.

### 14.6 Запуск Котлового режима по событию

Если в настроечных параметрах Адаптера цифровой шины, являющегося исполнительным устройством основного котла, указать действия выбора созданного в конфигурации контроллера Котлового режима, то можно по аварии основного котла или пропадании с ним связи, активизировать работу резервного котла:

	Максимальный уровень					
Адаптеры котлов 🕐	модуляции					
A	100					
Адаптер цифровой		J				
шины						
	Иконка	L. L				
Релейное	+ ×					
Управление		5				
,	🗌 Уличный датчик 🕜	🔲 Резервный уличный дат	чик 🕐			
≡ Реле Г						
	🔲 Второй контур ⊘					
+ ДОБАВИТЬ						
	Отслеживать параметры		~			
Hacochi	отслеживать параметры ()		Ť			
Насосы						
Нет доступных элементов		Действия				
	Выполнить при потере					
+ ДОБАВИТЬ	связи с котлом	ВЫБРАНО: 1 +				
	Выполнить при					
Краны смесителей 📀	восстановлении связи	выбрано: 1 +	<u> </u>			
	с котлом			Выберите лействи		×
нет доступных элементов	Выполнить при аварии	ВЫБРАНО: 1 +		высерите денстви		
+ ДОБАВИТЬ	котла		Оповеш	ения	ЕРЕЙТИ В РАЗДЕЛ	Л
	Выполнить при				G	2
	устранении аварии	BDIDFARO. 1 T		ano mixe nopora	Ċ	_
	Roma		Про	падание основного питани	ия 🤄	)
			Поя	вление основного питания	i (*	9
			Пот	еря связи с внешним устро	ойством 🤄	9
			Ош	ибка котла	G	)
			Действ	ия с выходом	ЕРЕЙТИ В РАЗДЕЛ	n
			Нет дост	упных действий		
			Команд	ы		
			🗌 Вкл	ючить реле «Реле»		
			🗌 Вын	ключить реле «Реле»		
			🗹 Вкл	ючить режим «Котловой р	ежим Резерв»	]
			🗌 Вкл	ючить режим «Комфорт»		
			Вкл	ючить режим «Эконом»		
			🗌 Вкл	ючить режим «Расписаниє	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
			🗌 Вкл	ючить режим «Выключен»		

## 15. Исполнительные устройства для контуров отопления и ГВС

Вкладка "*Исполнительные устройства*" содержит параметры, определяющие работу релейных и универсальных выходов Контроллера и подключенных к ним устройств: насосов, электроприводов смесительных кранов, термоголовок и других э/приборов, используемым для терморегулирования в Отопительных контурах и для управления источниками тепла Котловых контуров.

10000	Отопление	Адаптеры котлов ⊘
	Режимы отопления	= BOSCH 6000
٨	Датчики температуры	+ добавить
°	Исполнительные устройства	Релейное управление 🗇
	Управление	Нет доступных элементов
	Датчики	+ ДОБАВИТЬ
,×⊃ ×	Действия с выходами	Насосы 🗇
F	Элементы управления	Нет доступных элементов
	Интерфейс пользователя	+ ДОБАВИТЬ
ap do	Сценарии	Краны смесителей
	Радиоустройства	Нет доступных элементов
((%))	Радиомодули	+ ДОБАВИТЬ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Радиобрелоки	Аналоговые выходы 🕅

Исполнительные устройства разделены на группы по предназначению:

- Адаптеры котлов используются для обмена данными и управления котлом по цифровой шине котла;
- **Реле** используются для управления выходом ОК или релейным выходом по принципу "Включить / Выключить";
- Насосы используются для управления выходом ОК или релейным выходом по принципу "Включить / Выключить" с возможностью применения времени задержки выключения (выбег), защиты от "сухого хода" насоса и прочих параметров управления насосами;
- Краны смесителей используются для управления выходом ОК или релейным выходом к которому подключен импульсный электропривод трехходового крана или термоэлектрический клапан (термоголовка), обеспечивающие плавное регулирование температуры теплоносителя;
- **Аналоговые выходы** используются для пропорционального управления исполнительным устройством имеющим вход управления 0-10В.

Для управления Исполнительными устройствами предназначены выходы Контроллера:

- релейные выходы;
- универсальные входы / выходы в режиме Выход ОК (открытый коллектор);
- аналоговый выход 0-10 В.

15.1 Адаптеры котлов

Адаптер цифровой шины подключается к Контроллеру как отдельное дополнительное устройство и обеспечивает обмен данными с Котлом по поддерживаемому им протоколу цифровой шины. К Контроллеру одновременно может быть подключено до 20-ти адаптеров. Через каждый адаптер осуществляется обмен данными только с одним котлом.

Контроллер рассчитывает оптимальную для поддержания целевой температуры действующего режима отопления температуру теплоносителя и передает ее в цифровую шину котла.

Подключение адаптера цифровых шин рекомендуется производить экранированным кабелем МКЭШ или кабелем UTP (витая пара). Полярность подключения к цифровой шине котла значения не имеет.

Порядок первого включения котла, управляемого Контроллером по цифровой шине, или повторного включения после внесения каких-либо изменений в его сервисные настройки, предусматривает следующую последовательность действий: сначала включается питание Котла и примерно через 3-5 минут – питание Контроллера.

ВНИМАНИЕ!!! При управлении котлом по цифровой шине рекомендуется в его сервисных настройках установить максимальный уровень мощности (модуляции) и выставить максимальную температуру для теплоносителя.

Эта рекомендация относится к правильно подобранным по мощности котлам. Если котел выбран с большим запасом мощности, то в процессе эксплуатации можно самостоятельно определить достаточные значения этих параметров и понизить задаваемые сервисной настройкой.

При правильном подключении и настройках Контроллера индикаторы на корпусе адаптера цифровых шин периодически мигают:

- зеленый отображает связь между контроллером и адаптером;
- красный отображает связь между адаптером и котлом.

Перечень котлов поддерживаемых по цифровой шине приведен в <u>Библиотеке ZONT</u> в разделе "<u>Схемы подключения</u>". Проверить совместимость можно с помощью <u>нашего ресурса</u>.

Схема подключения внешнего универсального адаптера ЦШ приведена в <u>Приложении 4 Раздел</u> <u>1.2 Подключение внешних адаптеров цифровой шины.</u>

Параметры настройки адаптера цифровой шины:

- **Тип** интерфейс цифровой шины. Определяется автоматически. Если по какой-то причине этого не произошло (окно осталось пустым), то тип интерфейса нужно указать вручную;
- **Модель котла** модель подключенного по ЦШ котла. Указывается пользователем при настройке и нужна для правильного отображения и расшифровки кодов возникающих ошибок (аварий) котла;
- *Уличный датчик* признак для считывания и применения в алгоритмах ПЗА и Лето уличной температуры по данным из ЦШ котла;

- Второй контур признак разрешения работы котла на ГВС при подключении для управления по протоколу OpenTherm котлов BAXI LUNA, BAXI NUVOLA, Buderus U072, Bosch W6000;
- **Отслеживать параметры** выбор доступных параметров из ЦШ котла для отображения их в сервисе и графиках;
- **Выполнить при...** настройка действия контроллера при типовых событиях (потери связи, восстановлении связи, при возникновении аварии котла и при восстановлении работы котла после аварии).

	Адаптеры котлов 🕐	Название 🕐	Тип
	BOSCH 6000	BOSCH 6000	OpenTherm 👻
°,°,° °,*,°°	+ ДОБАВИТЬ	Встроенный интерфейс	Тип ⑦ Универсальный адаптер №1 -
	Релейное Отравление	Модель котла 🕜	Максимальный уровень модуляции 📀
é⊈	Нет доступных элементов	Buderus 👻	100
	+ ДОБАВИТЬ	🔲 Уличный датчик	🗹 Второй контур
61 10 10 10 10 10 10 10 10 10 10 10 10 10	Насосы 📀	Отслеживать параметры	~
((0))	Нет доступных элементов		Действия ⊘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Краны смесителей @	Выполнить при потере связи с котлом	Выбрано: 0 🛛 +
۳ ۳		Выполнить при восстановлении связи с	Выбрано: 0 🕂

# 15.2 Реле

Управление любым исполнительным устройством обеспечивается через замыкание и размыкание цепи его питания. При подключении исполнительного устройства к релейному или универсальному выходу Контроллера необходимо в настройке этого устройства указать номер выхода.

٢	Релейное	Название ⊘	<u> Номер аппаратного выхода</u> 🕥
°\?°°	управление	Реле	Не выбран 👻
	🛙 Реле 🔳	🗌 Инверсный режим	Номер должен быть выбран

Параметр **Инверсный режим** меняет исходное состояние выхода на противоположное. Таким образом релейный нормально разомкнутый (HP) выход становится нормально замкнутым (H3), релейный выход H3 становится HP, а Выход OK в активном состоянии имеет +12B, а не 0B.

## 15.3 Насосы

Управление насосом обеспечивается через замыкание и размыкание цепи его питания. При подключении насоса к релейному или универсальному выходу Контроллера необходимо в настройке этого насоса указать номер выхода, к которому он подключен.

(0)		Название 💮	🛕 Номер аппаратного выхода 🕜
	пасосы (у	Насос	Не выбран 👻
°	Hacoc 📋		Номер должен быть выбран
	+ ДОБАВИТЬ	Выбег ⊘	Режим работы насоса
(0)		0 мин	💿 Постоянная работа
" ₽	Краны смесителей 🗇		🔘 Работа по запросу контура
F	≡ Кран	🔲 Летняя прокрутка насоса	🔲 Инверсный режим 🕐
	+ добавить	Датчик контроля давления	Отключать насос при давлении ниже
2 2 2 2 2	Аналоговые выходы 📀	Не выбран 👻	0 бар

При выборе параметра **Постоянная работа** насос работает всегда и выключается только:

- по приоритету контура ГВС (если этот приоритет указан в настройке контура, в котором применяется данный насос;
- при выключении контура действующим отопительным режимом или сценарием; •
- при превышении фактической температурой теплоносителя значения максимальной температуры заданной настройкой контура, в котором применяется данный насос.

При выборе параметра Работа по запросу контура насос включается только если в контуре есть "запрос на тепло" и выключается, когда запроса нет.

Если насос одновременно используется в нескольких контурах или сценариях, то он будет включаться по первому "запросу на тепло" от любого из контуров (первой команде сценария), а выключаться только когда все "запросы" (команды) сняты.

Параметр Выбег определяет время задержки выключения насоса.

Параметр Инверсный режим меняет исходное состояние выхода на противоположное. Таким образом релейный нормально разомкнутый (НР) выход становится нормально замкнутым (НЗ), релейный выход НЗ становится НР, а Выход ОК в активном состоянии имеет +12В, а не 0В.

ВНИМАНИЕ!!! В смесительном контуре насос работает всегда и отключается если:

- контур отключен;
- находится в режиме "Лето";
- расчетная температура теплоносителя оказалась ниже нижней границы для этого контура.

#### Параметры для защиты насоса от сухого хода и закисания:

Защита от закисания – Насос ежедневно в 3-00 будет включаться на 5 минут для того, • чтобы предотвратить окисление вала насоса в подшипниках и возможного заклинивания ротора по этой причине.

- Отключать насос при давлении ниже XX,X <u>Защита от сухого хода</u>. Если показания датчика контроля давления в системе отопления опустится ниже заданного порога, насос будет выключен.
- Датчик контроля давления настроечный параметр, в котором нужно указать вход Контроллера, к которому подключен датчик давления теплоносителя в системе.

### 15.4 Краны смесителей

Управление электроприводом смесительного крана осуществляется чередованием импульсов открывания и закрывания с настраиваемыми длительностью и периодом их повторения. Для управления сервоприводом трехходового крана используются 2 выхода Контроллера, а для управления сервоприводом двухходового крана (термоэлектрическим клапаном) – один.

	=	Название ⊘ Кран Трехходовой		Использовать аналоговый вых	юд
°.¦^•	+ ДОБАВИТЬ	Тип		Номер аппаратного выхода закрытия крана	0
((1))	Краны смесителей 🕐	• Трех-ходовой кран		Не выбран	•
»_	<u>-</u>	О Термоголовка ②		Номер должен быть выбран	
,,⊽→	Кран Грехходовои	Номер аппаратного выхода	0	Время шага	
F	Аналоговый	открытия крана	0	0	сек
	термоэлектрический 📋	Не выбран	•		
58	клапан	Номер должен быть выбран			
20	+ ДОБАВИТЬ	Период шага 🕐		Время полного закрытия	
	Тдоблого	10	сек	10	сек
(%)	Аналоговые выходы 🕐		0	Не останавливать по	
~ e	= Выхол №1 R413D08 <b>=</b>	пропорциональный коэффициент	0	Достижению времени	0
	BBIX04 N-1 1410000	U	сек	закрытия	
" <b>~</b> •	АВ управления 💼	Закрывать при			
ð	ВЕНТИЛЯЦИЕЙ	неисправности датчика температуры	?		

Для обеспечения плавного регулирования температуры теплоносителя в контуре необходимо импульсное управление вращением привода в сторону "открывания" и "закрывания". При подаче каждого импульса привод перемещает шток крана на определенный угол или смещает клапан на определенное расстояние. При настройке задается *Период шага* – время между первым и следующим включением и *Время шага* – время в течении которого на привод подается напряжение.



**Период шага** для управления трехходовым краном настраивается в пределах от 10 до 180 секунд. Для управления двухходовым краном (термоэлектрическим клапаном) он всегда равен 10 сек. и не может быть изменен настройкой)

**Время шага** (длительность импульсов открывания или закрывания) настраивается произвольно, но не может превышать или быть равным *Периоду шага*.

**Время полного закрытия** – это параметр. определяющий время полного цикла работы привода от открытого до закрытого состояния (указан в тех.документации на привод). Этот параметр нельзя указать равным нулю – в этом случае сервопривод работать не будет.

При движении сервопривода в одну и ту же сторону (команды "закрывание" или "открывание") длительность выполненных "шагов" суммируется и при достижении заданного значения импульсы прекращаются. Этим предохраняется от износа реле. Когда направление вращения сервопривода изменяется на противоположное, блокировка снимается.

*Примечание:* Если повернуть привод крана вручную точность его регулирования нарушается. Поэтому рекомендуется выполнять рестарт Контроллера по питанию всякий раз после ручного вмешательства в положение сервопривода.

**Пропорциональный коэффициент** – параметр используемый для автоматической коррекции длительности импульсов *Время шага* при дельте между целевой и текущей температурой теплоносителя на выходе смесительного крана более 5°С.

При значении коэффициента 0 – длительность импульсов *Время шага* не меняется. При задании коэффициента в диапазоне *от 0,1 до 3* длительность импульсов *Время шага* постоянно рассчитывается алгоритмом по формуле:

Время шага = Время шага из настроек + (дельта х Пропорциональный коэффициент)

Примечание: Для управления термоэлектрическим клапаном (термоголовкой) используется один выход Контроллера, который открывает клапан (для нормально закрытой термоголовки) или закрывает (для нормально открытой термоголовки). По умолчанию период импульсов (Период шага) для термоголовки равен 10-ти секундам и его изменение настройкой Контроллера не предусмотрено. Продолжительность импульса (Время шага) должно быть меньше чем период, соответственно установить время шага можно от 1-ой до 9-ти секунд.

**ВНИМАНИЕ!!!** Алгоритм контроллера предусматривает использование нормально закрытых термоэлектрических клапанов (термоголовок). Если вы используете нормально открытые – необходимо установить признак "Инверсный режим" или вместо нормально разомкнутых контактов реле использовать для подключения нормально замкнутые контакты.

#### Опции:

• Защита от закисания – 1-го числа каждого месяца в 3-00 контроллер будет принудительно прокручивать смесительный кран до крайних положений.
- Выполнять только если кран не закрыт параметр относится к защите крана от закисания и запрещает применение этой функции в конфигурациях, где нормальным (рабочим) состоянием является закрытое положение смесительного крана.
- Не останавливать контроллер будет постоянно подавать импульсы управления на электропривод смесительного крана, даже есть он достиг расчетного крайнего положения.
- Закрывать при аварии датчика при неисправности датчика температуры теплоносителя контура контроллер будет принудительно закрывать смесительный кран..
- **Режим тестирования** функция проверки правильности монтажа электропривода смесительного крана во время пусконаладочных работ.

# 15.5 Тестирование правильности подключения исполнительный устройств

Режим тестирования включается и выключается перемещением выключателя

_	Режим тестирования:
	Выключен

Электроприборы, управляемые через исполнительное устройство "*Реле*" и "*Насосы*" проверяются включением и выключением.

Электроприводы "*Смесительных кранов*" сначала автоматически калибруются, для чего контроллер автоматически закрывает кран и сбрасывает в ноль подсчет импульсов закрытия. После этого вам нужно подать команду открытия крана на 50% и убедиться, что он установился в в среднее положение

🜔 Режим тестирования: Включён 🛛 💿	
Процент открытия	
0%	100%
<u> Выполняется калибровка</u>	
УСТАНОВИТЬ	

ВНИМАНИЕ!!! Используйте "Режим тестирования" только при пусконаладочных работах. После применения режима тестирования Контроллер необходимо перезапустить по питанию.

# 15.6 Аналоговые выходы 0-10 Вольт

#### 15.6.1 Использование Выхода 0-10 Вольт для управления котлом

Аналоговый выход 0-10В может быть использован для управления котлом, имеющим аналоговый вход 0-10В постоянного тока. В сервисных настройках котла для такого управления необходимо выбрать один из режимов:

- установка желаемой температуры, например 1 В  $\Rightarrow$  10 °C, 10 В  $\Rightarrow$  100 °C
- установка мощности горелки, например 1 B ⇒ 10 %, 10 B ⇒ 100 %

Для настройки управления в конфигурации Контроллера котловому контуру надо указать "исполнительное устройство" – Аналоговый выход 0-10В. Напряжение, формируемое на этом выходе будет являться внешним сигналом управления для котла.

# В настройке такого аналогового выхода 0-10В, надо задать параметр "Шаг значения", с которым будет меняться управляющее напряжение.

	Аналоговые выходы 🔊		Название ⊘				Устройсте	зо вывода 🕥
	Управление котло	Управление котлом		тлом	и 0-10B		Аналого	вый выход №2 🔹
°Å°	0-10B	Î	Значения на вы	іходе	е, В 💿		Шаг значе	ения (?)
	≣ Выход №1 R413D0	8 📋	Мин О	10	Макс		0,1	
¥	АВ управления		Единицы измере	эния	0			
	ВЕНТИЛЯЦИЕЙ	Î	Напряжение (Е	3)	Ŧ			
1000	Система отопления	Название (	⑦ (ОТЛА 0-10В)					
	🔹 КОНТУР КОТЛА 0-10В 📋	Значок			Тип 🔊			
	КОНТУР КОТЛА BOSCH 6000	С. Газо	вый котёл	•	Контур котла		-	← Выберете элементы ×
°°	РАДИАТОРЫ	Термода	атчик температуры	тепло	оносителя			Адаптеры котлов ПЕРЕЙТИ В РАЗДЕЛ ВОЅСН 6000 (Э)
	ГОРЯЧАЯ ВОДА 📋	Основной	i (?)		Резервный ⊘			Релейные управления ПЕРЕЙТИ В РАЗДЕЛ
, , , ,	РАДИАТОРЫ ПЗА 🧻	Не выбр	ран	•	Не выбран		•	Нет доступных действий
F)	+ ДОБАВИТЬ	Температу	ра теплоносителя, °С	)	Задержка выключения н	нагре	ева 🕜	Насосы Нет доступных действий
5 5	Каскад котлов ⊘	Мин 15	70 Макс		0		сек	Аналоговые выходы
ਵਿੱਚ	Нет доступных элементов	Гистерезис	регулирования 🕐					☐ Выход №1 R413D08
(( _N ))	+ ДОБАВИТЬ	0,5		°C				АВ управления ВЕНТИЛЯЦИЕЙ
~ <b>^</b>					Элементы (?)			Управление котлом 0-10В
(C)		Исполните устройства	льные а		Выбрано: 1 🕂			ок

В результате такой настройки "запрос на тепло" к котловому контуру из расчетной температуры теплоносителя будет преобразован в управляющее напряжение и через аналоговый выход поступит на аналоговый вход 0-10 В котла.



# 15.6.2 Использование Выхода 0-10 Вольт для управления сервоприводом

Аналоговый выход 0-10В может быть использован для пропорционального управления сервоприводом за счет подачи на него управляющего сигнала в диапазоне напряжений от 0 до 10 -ти Вольт с настраиваемым шагом от 0,1 Вольт:

۲		Название 🕐	Устройство вывода
°`\}`°	Аналоговые выходы 🕜	АВ управления ВЕНТИЛЯЦИЕ	Аналоговый выход №1 🛛 👻
	АВ управления ВЕНТИЛЯЦИЕЙ	Значения на выходе, В ⑦	Шаг значения ⑦
` ₹	≘ Выход №1 R413D08 📋		0,1
F	+ добавить	Напряжение (В)	

Параметр **Шаг значения** – это точность, с которой будет изменяться напряжение на аналоговом выходе. Шаг по сути определяет скорость изменения напряжения на выходе и, как следствие, чувствительность и точность управления исполнительным устройством подключенным к аналоговому выходу. Рекомендуемое значение 0,1 В.

При настройке Исполнительного устройства *Кран смесителя*, где в качестве выхода Контроллера управляющего сервоприводом выбран "Аналоговый выход 0-10В", необходимо настроить следующие параметры:

**Период шага** – время в пределах которого на аналоговом выходе 0-10В будет присутствовать управляющее напряжение.



**Время полного закрытия** – время движения привода от открытого до закрытого состояния. Обычно этот параметр указан в технических характеристиках используемого привода. Значение 0 не допустимо.

**ВНИМАНИЕ!!!** Для алгоритма работы Выхода 0-10В тип исполнительного устройства (Трёхходовой кран или Термоголовка) не имеет значения.

(@)		Название ⊘	<b>—</b> 11 — ×	
۲	Аналоговый	Аналоговый термоэлектрический кл	Использовать аналоговый выход	
°	термоэлектрический 👕 клапан	Тип	Номер аппаратного выхода	
(())		Трёх-ходовой кран ⑦	АВ управления ВЕНТИЛЯЦИ 🔹	
7	+ ДОБАВИТЬ	🔿 Термоголовка 🕜		
	Аналоговые выходы 🕐	Период шага	Время полного закрытия	
200	≡ Выход №1 R413D08 📋	10 сек	10 сек	
<u></u>	АВ управления	Пропорциональный коэффициент (?)	закрывать при П неисправности датчика (?)	
L d U	ВЕНТИЛЯЦИЕИ —	0 %	температуры	
((၇))	+ ДОБАВИТЬ	Режим тестирования: Выключен	0	

**ВНИМАНИЕ!!!** В случае использования в качестве Исполнительного устройства в отопительном контуре аналогового термоэлектрического клапана (термоголовки) необходимо выбирать *нормально закрытый клапан*. При использовании нормально открытого клапана алгоритм управления работать не будет.

Управляющее напряжение, подаваемое с Выхода 0-10В на сервопривод, можно отслеживать с помощью Элементов управления "Аналоговый выход", и Статуса этого выхода Контроллера:



СТАТУС АНАЛОГОВОГО ВЫХОДА СИГНАЛ УПРАВЛЕНИ ОТСУТСТВУЕТ

*Примечание:* Статус аналогового выхода будет активен только пока контроллер дает команду приводу на движение. В ручном режиме статус привода будет всегда в пассивном состоянии, т.к. ручная команда мгновенно изменяет состояние выхода с текущего на то, которое выставлено вручную. В режиме тестирования доступно изменение напряжения на аналоговом выходе для проверки правильности подключения и проверки направления движения исполнительного устройства.

Режим тестирования: Включён ⑦	
Процент открытия	
0%	100%
установить	

Отображение изменения управляющего напряжения на аналоговом выходе доступно на графике, в котором выбран параметр **Элемент управления: состояние**, как в режиме тестирования,



#### так и в процессе работы алгоритма управления.



Пример схемы подключения аналогового электропривода к выходу 0-10В приведен в <u>Приложении 4,</u> <u>Раздел 5</u>.

#### 15.6.3 Управление аналоговым выходом 0-10 Вольт в ручном режиме

Для ручного управления исполнительным устройством подключенным к аналоговому выходу 0-10В, необходимо создать **Элемент управления** с типом элемента **Аналоговый регулятор.** 



При этом в сервисе, в блоке Управление и Статус будет отображен Элемент управления аналоговым выходом 0-10В. Перемещая ползунок шкалы напряжения, можно менять напряжение на аналоговом выходе и тем самым управлять работой исполнительного устройства вручную.

*Примечание:* Если аналоговый выход 0-10В управляет Исполнительным устройством котлового и отопительного контура, то перемещение движка вручную меняет напряжение на выходе, но не сохраняет его в конфигурации и алгоритм управления вернет напряжение в расчетное значение.

# 16. Управление выходами Контроллера

Для управления работой различных электроприборов, не входящих в состав исполнительных устройств, предназначены "Действия с выходами".

Действие с выходом Название ⑦ Действие с выходом М Номер аппаратного выхода ⑦ Не выбран - Номер должен быть выбран Тип действия ⑦ Выключить - Задержка включения ⑦ 0 сек Длительность ⑦ Период ⑦ 0 сек Длительность ⑦ Период ⑦ 0 сек Для генерации Для генерации Выполнять по расписанию ⑦ Время 00:00	< 🛛 Действия с выходами 🔹 🛛 🔧 🗙
Название ⑦ Действие с выходом М Номер аппаратного выхода ⑦ Не выбран	Действие с выходом
Действие с выходом Момер аппаратного выхода ⑦ Не выбран Номер должен быть выбран Тип действия ⑦ Выключить Задержка включения ⑦ 0 сек Длительность ⑦ Период ⑦ импульса ⑦ 0 сек Для генерации Выполнять по расписанию ⑦ Время 00:00	Название ⊘
<ul> <li>Момер аппаратного выхода ()</li> <li>Не выбран</li> <li>номер должен быть выбран</li> <li>тип действия ()</li> <li>Выключить</li> <li>Задержка включения ()</li> <li>0</li> <li>сек</li> <li>Длительность ()</li> <li>Период ()</li> <li>импульса</li> <li>0</li> <li>сек</li> <li>Для генерации</li> <li>Выполнять по расписанию ()</li> <li>Время</li> <li>00:00</li> </ul>	Действие с выходом
Не выбран • Номер должен быть выбран Тип действия ⑦ Выключить • Задержка включения ⑦ 0 сек Длительность ⑦ Период ⑦ импульса ⑦ 0 сек Для генерации Для генерации Выполнять по расписанию ⑦ Время 00:00	🛕 Номер аппаратного выхода 🕥
Номер должен быть выбран Тип действия ⑦ Выключить Задержка включения ⑦ 0 сек Длительность ⑦ Период импульса ⑦ 0 сек Для генерации Выполнять по расписанию ⑦ Время 00:00	Не выбран 👻
Тип действия ⑦ Выключить Задержка включения ⑦ 0 сек Длительность ⑦ Период ⑦ импульса ⑦ 0 сек 0 сек Для генерации Для генерации Выполнять по расписанию ⑦ Время 00:00	Номер должен быть выбран
Выключить - Задержка включения ⑦ 0 сек Длительность ⑦ Период ⑦ импульса ⑦ 0 сек Для генерации Выполнять по расписанию ⑦ Время 00:00	Тип действия (?)
Задержка включения () О сек Длительность () импульса () О сек Для генерации Для генерации Выполнять по расписанию () Время О0:00	Выключить 👻
0     сек       Длительность импульса     Период импульса     ⑦       0     сек     0     сек       Для генерации     Для генерации     О     сек       Выполнять по расписанию     ⑦       Время     00:00	Задержка включения
Длительность импульса о сек Для генерации Выполнять по расписанию Время 00:00	0 сек
0         сек         0         сек           Для генерации         Для генерации         Для генерации           Выполнять по расписанию ?         Время         00:00         О	Длительность 🔿 Период 📀 импульса 🗇 импульса 📀
Для генерации Для генерации Выполнять по расписанию ⑦ Время 00:00	0 сек 0 сек
Выполнять по расписанию (?) Время 00:00	Для генерации Для генерации
	Выполнять по расписанию ⑦ Время 00:00
ПН ВТ Ср СОХРАНИТЬ	Пн Вт Ср сохранить

"Действия с выходами" применяются при программировании реакции Контроллера на срабатывание датчиков, выполнение команд по расписанию, выполнение отдельных команд пользователя вызванных при помощи кнопок и в Сценариях.

Название – произвольное имя команды или действия

Номер аппаратного выхода – это выход ОК или релейный выход Контроллера к которому подключен управляемый электроприбор.

Тип действий – алгоритм управления выходом:

- включить;
- выключить;
- включить на время;
- инвертировать (менять состояние выхода на

противоположное при каждом запуске действия с выходом).

Генерация импульсов – алгоритм включения выхода Контроллера с заданными длительностью и периодом. Импульс включения выхода на заданную длительность формируется один раз в заданный период. Он не может быть больше самого периода, иначе это будет постоянное включение.Соответственно генерация импульсов позволяет включать выход циклически на выбранное время.

*Примечание:* Генерация импульсов не имеет ограничения по времени и будет отключена только при перезагрузке Контроллера или после запуска действия с выходом, в котором будет указана команда "Выключить". То есть, для отключения генерации с кнопки или по другому событию, нужно создать еще одно действие с выходом, в котором выбрать команду "Выключить".

**Расписание** – применяется при необходимости включать и выключать выход в определенное время в определенные дни недели. Такое действие с выходом удобно использовать в сценариях.

ВНИМАНИЕ!!! В блоке настроек "Действия с выходами" нельзя использовать выходы Контроллера, назначенные в блоке настроек "Исполнительные устройства" Алгоритмы управления заложенные в Исполнительные устройства имеют более высокий приоритет и будут прерывать команды управления, запущенные через "Действия с выходами", что не позволит завершить или выполнить запланированное действие.

# 17. Элементы управления и индикации

Для отображения в сервисе состояния выходов и входов Контроллера, а также управления выходами Контроллера по команде пользователя, предназначены "Элементы управления".

< 807E83167A30 - 13:40 🔧 × Элементы управления	К КОТЕВЗ167АЗО - 13:40 Элементы управления К К К К К К К К К К К К К К К К К К К
Элементы управления 🕐	Элементы управления 🕐
Нет доступных элементов + ДОБАВИТЬ	Нет доступных элементов + ДОБАВИТЬ

Название 🕐	
Элемент управления	
Тип элемента	
Статус входа/выхода	*
Статус входа/выхода	
Простая кнопка	
Сложная кнопка	

"Статус входа / выхода" - отображает текущее состояние входа или выхода Контроллера; "Простая кнопка" или "Сложная кнопка" позволяет включать и выключать выход Контроллера.





Активное состояние элемента управления выделяется цветом.

• *Простая кнопка* – активирует только одно "Действие с выходом";

• Сложная кнопка – управляет двумя "Действиями с одним и тем же выходом". Каждое нажатие кнопки включает свое "Действие" и меняет статус с активного на неактивный и наоборот.

Настройка элемента управления "Сложная кнопка" заключается в выборе "действия с выходом" и задания

текста для отображения активного и неактивного состояния этой кнопки в личном кабинете сервиса.

Неактивное состояние	Неактивное состояние
Текст неактивной кнопки ⑦	Текст неактивной кнопки
Значение не может быть пустым	Вентиляция отключена
Действие ⑦	Действие ⊘
Не выбран 🛛 👻 👻	Вкл Вентиляцию 👻
Должен быть выбран	
Активное состояние	Активное состояние
	Текст активной кнопки
Текст активной кнопки ⑦	Вентиляция включена
Значение не может быть пустым	Действие ⊘
Действие ⑦	Выключить Вентиляцию 👻
Не выбран	

*Примечание:* Рекомендуется активировать функцию сохранения текущего состояния элемента в энергонезависимой памяти Контроллера. Это нужно для того, чтобы после отключения питания прибора, он при восстановлении мог продолжить выполнение задачи управления.

Сохранять состояние в ⑦ энергонезависимой памяти	№ Насос Реле
Скрывать виджет на панели состояния	Трёхходовой кран
Скрывать название	🗐 Конвектор
Значок	Значок
Без значка 👻	Без значка

Опции "Скрывать название" и "Скрывать виджет" удобно использовать, когда настроено много кнопок и статусов, и в их названиях необходимо более подробно описать тип Действий с выходом и назначение. Это позволяет не загромождать блок "Управление и Статус" лишней информацией.

Каждому создаваемому Элементу управления можно выбрать "значок" с которым он будет отображаться в сервисе.

# 18. Сценарии

Сценарий – это последовательность выполняемых Контроллером команд управления выходами, режимами отопления и режимами охраны.

Запуск сценария может быть как по команде, так и по заданным условиям.

Сценарий составляется из элементов конфигурации Контроллера и в процессе эксплуатации может быть изменен (дополнен) или временно отключен кнопкой



**ВНИМАНИЕ!!!** В сценарии нельзя использовать команды управления выходами Контроллера, назначенными для управления исполнительными устройствами отопительных контуров. Алгоритмы управления и регулирования температуры в конфигурации контроллера имеют высший приоритет и сценарий с такими командами не будет выполняться. Поэтому при составлении сценария рекомендуется использовать управление отдельными выходами Контроллера через блок настроек "Действия с выходами".

# 18.1 Редактор сценария

		<del>.</del>	Запуск
		<b></b>	Логика
	Запуск	Насос ргвс	Значения датчиков
i	Полико	Выполнять каждые 1 мин т	Время
	логика	С Температура Бойлер > • 40	Состояние
	Значения датчиков	По Насос Насос РГВС • Включить •	Действия
Ī	Время	Иначе Насос Насос РГВС Выключить	Режимы отопления
	Состояния	· · · · · · · · · · · · · · · · · · ·	
	Действия	· · · · · · · · · · · · · · · · · · ·	
	Режимы отопления	· · · · · · · · · · · · · · · · · · ·	

Редактор сценария использует блоки, определяющие логику его работы:

В каждый блок автоматически подгружаются режимы, команды, действия с выходами, контролируемые датчики, параметры и события из конфигурации Контроллера. Поэтому прежде чем составлять сценарий, надо проверить все ли необходимое предусмотрено в ней.

#### 18.1.1 Блок запуска сценария

Запуск по команде. Такой сценарий является простым и запускается однократно или по команде пользователя (по нажатию кнопки элемента управления), или включается другим сценарием. Для повторного запуска требуется повторение команды.



Запуск по событию. Такой сценарий будет запускаться автоматически по событию, указанному в блоке "Когда сработает". Это может быть определенное время, значение контролируемого датчика, например температуры, или что-то другое. Когда событие станет истинным – выполнится инструкция из блока "То". Таким образом сценарий выполняется без участия пользователя.

Новый сценарий	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Когда сработает: 📗	¢	Ter	мпе	epa	тур	a (	По	год	аи	зи	нте	рн	ета	V.	<	7	•	10
To Hacoc Hacoc	OT	ОП	Лz	ze p	o1 v		Вк	лю	чит	Ъ₹		•		•		•	•	

*Пример:* Надо включить насос, когда температура на улице опустится ниже -10°C. Сценарий контролирует показания уличной температуры и при ее снижении до значения -10,1°C насос включается и работает до тех пор, пока не будет выключен пользователем, т.к. в сценарии нет другого условия.

Запуск по расписанию. Такой сценарий будет запускаться в определенные дни недели и время. Длительность работы сценария определяется параметром "Пауза".

Новый сценарий		
Выполнять по расписанию		
Пн 🖪 Вт 🗖 Ср 🗖 Чт 💭 Пт 💋 Сб	7	Bc
в 10 : О		
в 10 : 0 Насос Насос ОТОПЛ ze p1 • Включить •		
в 10:0 Насос Насос ОТОПЛ ze p1 С Включить С Пауза 1 час С	•	:
в 10:0 Насос Насос ОТОПЛ ze p1 • Включить • Пауза 1 час • • • • • • • • • • • • • • • • • • •		•

Запуск по периодически контролируемому условию. Такой сценарий полностью автоматизирован и не требует участия пользователя. Частота опроса контролируемых условий запуска сценария определяется параметром "Выполнять каждые".



*Пример:* Надо включать насос, только когда температура на улице опускается ниже -10°С и выключать его когда она выше -10°С.

# 18.1.2 Блок логики сценария

Определяет условия для запуска сценария и последовательность выполняемых им действий.



# 18.1.3 Блок значений датчиков

Определяет список контролируемых сценарием датчиков.



#### 18.1.4 Блок времени

Определяет время (секунды, минуты, часы, дни недели) запуска сценария или выполняемого им действия.

Запуск	Текущее время < 0 : 0
Логика	С День недели: ✔ Пн ✔ Вт ✔ Ср ✔ Чт ✔ Пт ✔ Сб ✔ Вс
Значения датчиков	Пауза 0 сек
Время	

# 18.1.5 Блок состояния

Запуск	NTC Датчик EPCOS NTC 3988 10 кОм, 1% 🔹 Потеря связи 💌
Логика	Датчик
Значения датчиков	Режим КОМФОРТ в контуре
Время	Котел BOSCH
Состояния	Радиодатчик влажности ПОГРЕБ У Р Потеря связи У
Действия	Радиодатчик влажности ПОГРЕБ Р Потеря связи
Режимы отопления	Радиодатчик-433 СМК У Потеря связи
	Охранная зона Охранная зона СМК У На охране У
	Сервопривод Кран У В покое У

Определяет список параметров, которые можно использовать для формирования условий запуска сценария.

# 18.1.6 Блок действий

Определяет действия и команды доступные каждому элементу сценария.

Запуск	Послать оповещение ПИТАНИЕ ВЫШЕ ПОРОГА
Логика	Выполнить действие Включить вентиляцию в МАСТЕРСКОЙ
Значения датчиков	Поставить на охрану сохранную зону Охранная зона СМК
Время	Кран Кран У Открыть У
Состояния	Установить целевую температуру
Действия	для контура Котел BOSCH 🔹
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию Закрыть нептун
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию Закрыть нептун Открыть полив
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию Закрыть нептун Открыть полив Закрыть полив
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию т Закрыть нептун Открыть полив Закрыть полив Вкл рец гвс
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию  Закрыть нептун Открыть полив Закрыть полив Вкл рец гвс Выкл рец гвс
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию  Закрыть нептун Открыть полив Закрыть полив Вкл рец гвс Выкл рец гвс Выкл рец гвс Вкл Вентиляцию
Режимы отопления	Завершить сценарий Выполнить действие Вентиляция по расписанию  Закрыть нептун Открыть полив Закрыть полив Вкл рец гвс Выкл рец гвс Выкл Вентиляцию Выключить Вентиляцию

#### 18.1.7 Блок режимов отопления

Определяет Отопительные и Котловые режимы из конфигурации Контроллера, которые можно использовать в сценарии.



#### 18.2 Особенности написания сценария

• Сценарий **без блока запуска** НЕ РАБОТАЕТ. При написании сценария необходимые блоки выбираются или кликом мышки (веб-сервис), или перетаскиванием блока (Приложение);

Запуск	Новый сценарий
Логика	
Значения датчиков	Новый сценарий) Когда сработает: 🖡
Время	То
Состояния	Новый сценарий Выполнять по расписанию
Действия	УПН ØВТ ØСр ØЧТ ØПТ ØС6 ØВс в0:0
Режимы отопления	
	Новый сценарий Выполнять каждые 0 сек

• Несовместимые по логике блоки в сценарии не устанавливаются;



• Удалить сценарий или один из его элементов можно клавишей Delete (веб-сервис) или перетаскиванием назад (Приложение);

- Удаленный сценарий или его элементы хранятся в "корзине" —, где его можно посмотреть или вернуть для применения;
- Отменить элемент сценария можно правой кнопкой мышки действие «Отменить», или стрелкой возврата в предыдущее состояние . Завершить работу со сценарием и закрыть редактор можно кнопкой завершения . Сохранить готовый сценарий можно кнопкой «Применить»;
- Для обмена готовыми сценариями или их элементами между Контроллерами принадлежащими одному аккаунту (личному кабинету,) предназначено специальное хранилище

# 18.3 Примеры составления сценария

# Управление насосом рециркуляции ГВС

Задача: периодически включать насос рециркуляции ГВС на 10 минут только в период времени с 6-ти утра до 23-30 вечера и при условии, что температура воды в бойлере не ниже + 40 гр.

Рециркуля	ция ГВС
Выполнять	каждые 10 мин т
Если	И С Температура ГВС 🔹 >= 🔹 (40)
	🚺 🚺 Текущее время 🦻 🔹 🚺 👘
	🚺 Текущее время < 🔹 23 : 30
То	Выполнить действие РГВС ВКЛ
	Пауза 10 мин 🔹
	Выполнить действие РГВС ВЫКЛ
Иначе	Выполнить действие РГВС ВЫКЛ
	<u> </u>

Чтобы полностью автоматизировать сценарий применяем периодический контроль условий его запуска,. Для циклического включения насоса используем элемент "Пауза", причем длительность паузы между запуском насоса и его выключением должна быть равна периоду контроля условий. Если данные временные параметры сценария будут отличаться друг от друга, насос не будет работать с заданным временем и задача сценария не будет решена.

#### Запуск резервного электрокотла при остановке каскада из-за отсутствия газа

Задача: постоянно контролировать работу котлов каскада по параметру "Авария котла" и в случае когда у каждого из них будет он зафиксирован - активировать режим запуска резервного электрического котла.



Чтобы полностью автоматизировать этот сценарий применяем периодический контроль параметра "Авария" у исполнительных устройств "Адаптер цифровой шины" каждого котла из состава каскада. Для запуска электрокотла предварительно в конфигурации контроллера создаем котловой режим, где каскад выключен, а электрокотел включается по запросу (см. п.14.1 настоящей документации)

# 19. Интерфейс пользователя

Для удобства контроля и управления отдельные контуры, датчики и другие элементы управления из конфигурации контроллера можно сгруппировать и разместить на дополнительных <u>Пользовательских вкладках</u>.



Для создания новой вкладки используйте блок настроек "Управление / Интерфейс пользователя"

	Настройки	≡<			
,	Действия с выходами	•	Пользовательские вкладки 💿		
F	Элементы управления		∃ Зоны отопления	Ē	Î
	Интерфейс пользователя		- Koze i	6	-
ap.	Сценарии			·⊔	
— Раді	иоустройства		∃ Управление		Î
(('n))	Радиомодули		+ ДОБАВИТЬ		

Каждой новой вкладке дайте название, иконку и укажите необходимые опции

≡ Пользовательские вкладки ⑦	Название ⑦ Управление	Иконка Не выбрана ×
🗄 Зоны отопления 🛛 📋	🗌 Скрыть вкладку ⊘	🗌 Скрывать названия групп 🕜
≡ Котлы 🔲 📋		Элементы
🛿 Управление 🛛 📋	Элементы	ВЫБРАНО: 7 +

Выберите отображаемые на вкладке элементы из конфигурации контроллера.

- Выберите эле	ементы Х
Отопительные контуры	ПЕРЕЙТИ В РАЗДЕЛ
Основной	$( \mathbf{P} )$
Резервный	۲
🗌 Радиаторы	$\odot$
🔲 Тёплый пол	$\odot$
🗌 ГВС	
Режимы отопления	ПЕРЕЙТИ В РАЗДЕЛ
🗌 Комфорт	۲
🔲 Эконом	$\odot$
🔲 Котлы по запросу	$\odot$
🔲 Котлы выключены	$\odot$
Выключен	( )
🗌 Лето	۲
Цифровые термодатчики	ПЕРЕЙТИ В РАЗДЕЛ
🗌 Склад	$\odot$
Мастерская	$\odot$
🗌 Кладовка	•

← Выберите элем	енты Х	
Аналоговые термодатчики	ПЕРЕЙТИ В РАЗДЕЛ	
🗌 Радиаторы	$\odot$	
🔲 Теплый пол	$\odot$	
🗌 Улица	$(\Rightarrow)$	
Датчики	ПЕРЕЙТИ В РАЗДЕЛ	
Напряжение питания	$(\Rightarrow)$	
Охранные зоны	ПЕРЕЙТИ В РАЗДЕЛ	
Нет доступных действий		
Радиодатчики	ПЕРЕЙТИ В РАЗДЕЛ	
🔲 Гостиная	$( \mathbf{P} )$	
Радиодатчики 433MHz	ПЕРЕЙТИ В РАЗДЕЛ	
Нет доступных действий		
Элементы управления	ПЕРЕЙТИ В РАЗДЕЛ	
🗹 Рец гвс	$\odot$	
🗹 Полив	$( \mathbf{P} )$	
Вентиляция	$( \mathbf{P} )$	
🗹 Защита от протечки	$\odot$	•

# 20. Функции контроля безопасности

Возможность контроля состояния датчиков различного назначения, автоматической отправки оповещений при их срабатывании, и включения сирены или других электроприборов, позволяет использовать Контроллер для организации системы охранной сигнализации объекта.

Используемые для этой цели охранные и информационные датчики рекомендуется объединять в охранные зоны. Каждая охранная зона контролируется и управляется по отдельности. Для создания охранной зоны в нее должен быть добавлен как минимум один контролируемый датчик.

В качестве объекта охранной зоны может быть любое из помещений или отдельно расположенный объект (гараж, баня, теплица, септик и т.д.).

При срабатывании любого датчика из состава охранной зоны будет фиксироваться событие "Тревоги" в этой зоне. По данному событию можно настроить автоматическое оповещение, а также включение сирены, индикатора или любого электроприбора.

Оповещение о "Тревоге" в охранной зоне и оповещение от конкретного сработавшего датчика, можно настроить таким образом, что они будут формироваться одновременно.

При включении в конфигурацию контроллера охранной зоны, в личном кабинете веб-сервиса и мобильном приложении отображается панель управления этой зоной, в которой отображается состояние всех датчиков охранной зоны и кнопка постановки и снятия зоны с охраны.

<ul> <li>Охрана Отопление Графики События</li> <li>ОХРАНА</li> </ul>			4
Пожарная сигнализация Ф 11.6 В Ф Пожарная сигнализация	СНЯТЬ С ОХРАНЫ	Охрана ДОК 🌣	ПОСТАВИТЬ НА ОХРАНУ

Для включения режима охраны в охранной зоне можно использовать:

- кнопку постановки / снятий в сервисе ZONT;
- стандартные радиобрелоки 433 МГц и/или радиобрелки ZONT 868 МГц;
- ключи Touch Memory™;
- команду, поданную из сценарии;
- команду, поданную любым датчиком при срабатывании или при выходе измеряемых параметров за установленные границы.

При использовании ключей Touch Memory™, кодовых панелей или любого другого оборудования идентификации личности, имеющего выход типа "сухой контакт" можно построить контроль доступа на объект. Для дистанционного управления доступом можно управлять выходами контроллера и подключенными к ним исполнительными устройствами: электромагнитными замками, э/приводами ворот или шлагбаумов.

Для регистрации ключей Touch Memory™ необходимо разрешить их добавление на странице настроек Охранная зона и, последовательно касаясь ключом каждого считывателя, зарегистрировать их.

Настройки			×
Общие настройки	Охранные зоны 💿		
Совместный доступ	∃ Пожарная сигнализация	Î	~
Датчики	≣ Охрана ДОК	Î	~
Датчики температуры	+ добавить		
Охрана	Kalouu Touch Momony		
Оповещения	Ключи rouchivieniory ©		
Пользователи	+ РАЗРЕШИТЬ ДОБАВЛЕНИЕ КЛЮЧЕЙ		

В результате для каждого ключа появится запись с указанием номера ключа. В дальнейшем каждый ключ можно назначить конкретному пользователю указанному на странице Пользователи.

Тользователи 💿		
ХОЗЯИН		Î ^
Имя	Пароль для управления с другого телефонного номера	
хозяин		Ø
Список телефонов		
+7 (222) 222-22-22	<b>∎</b> +	
Список радиометок и ключей touchmemo	ry	^
Список пуст + × 📀		

Схемы подключения охранных датчиков приведены в <u>Приложение 4. Схемы подключения и</u> рекомендации по подключению.

# 21. Блоки расширения количества входов и выходов Контроллера

К Контроллеру H5000+ PRO.V2 может быть подключено не более 5-ти блоков расширения.

Блоки расширения подключаются к контроллеру по интерфейсу RS-485 и предназначены для увеличения количества его входов и выходов. Они выпускаются в нескольких вариантах исполнения:

Модель ZE-22 добавляет контроллеру 2 универсальных и 2 релейных выхода

Модель ZE-44 добавляет контроллеру 4 универсальных и 4 релейных выхода

Модель ZE-88 добавляет контроллеру 8 универсальных и 8 релейных выходов

<u>Радиорелейный блок ZRE-66</u> добавляет контроллеру 6 аналоговых входов 6 релейных выходов и обменивается данными по радиоканалу 868 МГц.

Контроллер может получать данные и передавать команды управления на Блоки расширения через <u>Адаптер Ethernet / Wi-Fi</u> по локальной сети.

# ПРИЛОЖЕНИЯ

# Приложение 1. Гарантийные обязательства и ремонт

Срок службы и гарантийный срок указаны в паспорте изделия.

Устройства, вышедшие из строя в течение гарантийного срока по причинам, не зависящим от потребителя, подлежат бесплатному гарантийному ремонту или замене. Гарантийный ремонт осуществляет производитель или уполномоченный производителем сервисный центр. Замена производится в тех случаях, когда производитель считает ремонт нецелесообразным.

Гарантийные обязательства не распространяются на устройства в следующих случаях:

- при использовании устройства не по назначению;
- при нарушении параметров окружающей среды во время транспортировки, хранения или эксплуатации устройства;
- при возникновении неисправностей, связанных с нарушением правил монтажа и эксплуатации устройства;
- при наличии следов недопустимых механических воздействий на устройства и его элементы: следов ударов, трещин, сколов, деформации корпуса, разъемов, колодок, клемм и т.п.;
- при наличии на устройстве следов теплового воздействия;
- при наличии следов короткого замыкания, разрушения или перегрева элементов вследствии подключения на контакты устройства источников питания или нагрузки не соответствующих техническим характеристикам устройства;
- при наличии следов жидкостей внутри устройства и/или следов воздействия этих жидкостей на элементы устройства;
- при обнаружении внутри устройства посторонних предметов, веществ или следов жизнедеятельности насекомых;
- при неисправностях, возникших вследствие техногенных аварий, пожара или стихийных бедствий;
- при внесении конструктивных изменений в устройство или проведении ремонта самостоятельно или лицами (организациями), не уполномоченными для таких действий производителем;
- гарантия не распространяется на элементы питания, используемые в устройствах, а также на Сим-карты и любые расходные материалы, поставляемые с устройством.

**ВНИМАНИЕ!!!** В том случае, если во время диагностики будет выявлено, что причина неработоспособности устройства не связана с производственным дефектом, а также при истечении гарантийного срока на момент отправки или обращения по гарантии, диагностика и ремонт устройства производятся за счёт покупателя, по расценкам производителя или уполномоченного производителем сервисного центра. Расценки на ремонт согласовываются с покупателем по телефону или в почтовой переписке до начала работ по ремонту.

**ВНИМАНИЕ!!!** Для проведения гарантийного и негарантийного ремонта необходимо предъявить или приложить совместно с устройством следующие документы:

1. Заполненную "<u>Заявку на ремонт</u>" (при отсутствии заполненной "Заявки на ремонт" диагностика и ремонт не выполняется). Также заявку можно оформить в электронном виде на сайте производителя <u>https://zont.online/proverka-statusa-remonta/</u>. Впоследствии вы сможете отслеживать статус, отправленного в ремонт оборудования.

2. Копию последней страницы паспорта устройства.

3. Копию документа, подтверждающего дату продажи устройства.

4. Копию паспорта отправителя, в случае использования транспортной компании для доставки устройства после ремонта.

**ВНИМАНИЕ!!!** В случае отсутствия паспорта устройства или документа, подтверждающего дату продажи, до отправки устройства в ремонт согласуйте, пожалуйста, со специалистом техподдержки условия проведения ремонта.

# Примечания:

- 1. Прежде чем обратиться по гарантии, свяжитесь, пожалуйста, со специалистом технической поддержки через e-mail: <u>support@microline.ru</u> для того, чтобы убедиться, что устройство действительно неработоспособно и требует ремонта.
- 2. Если Вы отправляете устройство в ремонт, то предварительно скачайте и сохраните действующую конфигурацию. При проведении диагностики и ремонта возможен сброс устройства к заводским настройкам. Сохраненный файл с конфигурацией поможет Вам восстановить ранее заданные настройки и продолжить эксплуатацию прибора.
- 3. Неработоспособность применяемой в устройстве SIM-карты (в т.ч. неверно выбранного тарифа), нестабильность или слабый уровень приема GSM-сигнала на границе зон обслуживания оператора сотовой связи или других местах неуверенного приема не являются неисправностью устройства.
- 4. Оборудование, приобретенное с устройством, но не входящее в его комплект (брелоки, метки, блоки реле, датчики и т.п.) может иметь гарантийные обязательства, отличающиеся от изложенных выше.
- 5. При транспортировке в ремонт устройство должно быть упаковано таким образом, чтобы сохранился внешний вид устройства, а корпус устройства был защищен от повреждений.
- Устройства, производимые под торговой маркой ZONT, технически сложные товары и не подлежат возврату в соответствии п.11 "Перечня непродовольственных товаров надлежащего качества, не подлежащих возврату или обмену на аналогичный товар", Постановления Правительства РФ от 19.01.1998 г. №55 в ред. от 28.01.2019 г.
- 7. Покупатель, совершивший покупку дистанционным образом (в интернет-магазине), вправе отказаться от товара в любое время до его передачи, а после передачи товара – в течении семи дней в соответствии с пунктом 21 ст. 26.1 Закона РФ "О защите прав потребителей".
- 8. При возврате устройство должно быть укомплектовано в соответствии с паспортными данными, должно быть упаковано в оригинальную упаковку, иметь товарный вид, ненарушенные гарантийные пломбы и наклейки.
- 9. Доставка устройства покупателю после проведения ремонта осуществляется силами и за счет покупателя в соответствии с п.7 ст.18 Закона РФ "О защите прав потребителей".

# Приложение 2. Условные обозначения, сокращения и аббревиатуры

**ZONT** – торговая марка, принадлежащая ООО "Микро Лайн", используется в названиях устройств и программного обеспечения, производимого ООО "Микро Лайн".

**Онлайн-сервис, интернет-сервис ZONT, сервис ZONT-ONLINE, веб-сервис** – программный сервис, доступный в веб браузерах на персональных компьютерах и в приложениях для мобильных устройств (смартфонах и планшетах). Сервис предоставляется бесплатно для личного использования и на платной основе для коммерческого использования. Подробнее можно узнать на сайте производителя <u>https://zont.online/service/</u>.

АКБ – аккумуляторная батарея.

**DS18S20**, **DS18B20** – маркировка цифровых датчиков температуры производства MAXIM.

**NTC** – тип аналоговых датчиков температуры.

ИК датчики – пассивные инфракрасные датчики движения.

Шлейф - тип схемы подключения нескольких датчиков к одному входу.

**OpenTherm, E-Bus, Navien, BridgeNet (Ariston), BSB, Daesung и т.д.** – интерфейсы (протоколы) обмена данными по цифровым шинам. Используются производителями отопительных котлов для обмена данными между оборудованием и внешними устройствами. Набор доступных параметров и команд у разных производителей отличается друг от друга. Веб-интерфейс и мобильное приложение ZONT отображает только то, что доступно в наборе..

**RS-485** – цифровой интерфейс, используемый в устройствах автоматики и контроля широкого назначения для обмена данными. Использует двухпроводную линию связи.

**1-Wire** — цифровой интерфейс, однопроводная шина данных для подключения датчиков температуры, считывателей ключей "Touch Memory", адаптеров датчиков давления, адаптеров аналоговых датчиков, измеряющих различные величины, и других устройств.

**Гистерезис** – в устройствах ZONT под этим термином понимается диапазон параметров, при которых управляющее воздействие не изменяется. Например, если целевая температура 50 °C и гистерезис 5, то в диапазоне 45...55 °C управляющее воздействие не будет меняться.

"**Общий**" – в устройствах ZONT это обозначение носит электрическая цепь питания "минус". Синонимы термина "общий" - "минус питания", "GND".

**ТП** – теплый пол.

**ТН** – теплоноситель.

СО – система отопления.

**ГВС** – горячее водоснабжение.

**Прямой контур** – высокотемпературный контур, температура теплоносителя в котором поддерживается котлом и включением/выключением насоса контура.

Смесительный контур – низкотемпературный контур, в котором температура теплоносителя поддерживается за счет подмеса обратного потока теплоносителя, что позволяет плавно регулировать температуру в этом контуре. Степень подмеса определяется положением заслонки исполнительного устройства – трехходового смесительного клапана с сервоприводом. Насос в смесительном контуре работает постоянно.

**ПЗА** – погодозависимая автоматика. Управление в режиме ПЗА - это способ внесения поправки в работу котла на Отопление в зависимости от изменения уличной температуры (погоды). Основой алгоритма ПЗА является использование определенных зависимостей температуры вне дома и температуры теплоносителя.

**Уровень модуляции** – параметр, считываемый контроллером из цифровой шины котла. Он отражает уровень мощности котла в текущий момент времени. Уровень модуляции, равный ста процентам, соответствует максимальной мощности котла, установленной его сервисными настройками. Значение модуляции может отсутствовать в наборе параметров цифровой шины у котлов некоторых производителей и не отображаться в сервисе ZONT.

Запрограммированные номера телефонов – номера телефонов, с которых можно отправлять команды тонального набора без ввода пароля.

**ПИД-регулятор** (пропорционально-интегрально-дифференциальный регулятор) – алгоритм поддержания целевой температуры воздуха в зоне отопления за счет изменения температуры теплоносителя расположенного в ней источника тепла. В алгоритме работы регулятора подлежат настройке только 2 коэффициента: Пропорциональный и Интегральный. Дифференциальный не настраивается и равен 0 (нулю), т.е.регулятор фактически является ПИ-регулятором.

Ручная настройка	
🗹 коэффициентов ПИД-	0
алгоритма	
Пропорциональный коэффициент	0
ПИД-алгоритма	0
15	
Интегральный коэффициент ПИД-	0
алгоритма	0
3	

Настройка регулятора производится с целью подобрать коэффициенты для того, чтобы он поддерживал целевую температуру воздуха, не допуская значительных колебаний. Увеличение коэффициентов тормозит алгоритм, уменьшение ускоряет.

Оценить качество подбора можно с помощью графиков. Для инертных систем (теплого пола) полов более предпочтителен пологий график. Для не инертных систем (вентиляции) – более крутой.



Подбор коэффициентов для достижения оптимального регулирования:

Выставить интегральный коэффициент в ноль, а пропорциональный в 1 (единицу). Далее нужно задать значение уставки температуры отличное от текущей и посмотреть, как регулятор будет менять температуру теплоносителя, чтобы достичь заданного значения.



При перерегулировании, необходимо уменьшать пропорциональный коэффициент, а если регулятор долго достигает уставки — увеличивать. Фактическая температура может стабилизироваться не на заданном значении, а на несколько меньшем из-за так называемой «статической ошибки». Для того чтобы исключить этот эффект нужно увеличивать интегральный коэффициент.

**Целевая температура** – это температура, которая должна поддерживаться в контуре Отопления (ГВС) при выбранном способе управления.

**Расчетная температура** – это внутренний параметр, рассчитываемый алгоритмом контроллера. Он представляет собой температуру теплоносителя оптимальную для поддержания целевой температуры и передается в качестве "запроса на тепло".

Запрос на тепло – это рассчитанное Контроллером или заданное настройкой значение температуры теплоносителя, при достижении которой считается, что котел справится с поддержанием целевой температуры отопления. Этот параметр транслируется котлу как команда на включение в нагрев. Отсутствие "запроса на тепло" означает, что в данный момент отсутствует необходимость в нагреве теплоносителя.

**SMS** – технология приёма и передачи коротких текстовых сообщений с помощью мобильного телефона. Входит в стандарты сотовой связи.

**SIM-карта, сим-карта** – идентификационный электронный модуль абонента, применяемый в мобильной связи. SIM-карты применяются в сетях GSM.

# Приложение 3. Внешний вид и назначение контактных групп Контроллеров



Контактные группы	Назначение контактных групп
	Основное питание Контроллера и выход для питания внешних устройств.
Вх/Вых 1 2	Универсальные Входы/Выходы.
	Релейный выход.
<b>F</b>	Аналоговый Выход 0 - 10В.
H NTC 1 NTC 2	Входы для аналоговых датчиков температуры NTC-10.
1-MIRE (3)	Клеммы для подключения к шине 1-wire (вход для подключения цифровых датчиков температуры DS18S20 / DS18B20). Общий провод на клеммах шины 1-wire предназначен для подключения только минусового контакта шлейфа с этими датчиками.
- + 420MA	Аналоговый Вход 4 - 20мА.
RS485 B RS485 A	Клеммы для подключения к шине цифрового интерфейса RS-48.
RS485 A 485 RS485 B B B bix	

Ethernet	Разъем для подключения сети Ethernet.
micro SIM	Слот держателя SIM-карты.
((*)) GSM	Разъем GSM-антенны.
(P) 433	Разъем антенны радиоканала 433 МГц.
L AKE	Выключатель резервного аккумулятора.
Restore	Кнопка RESTORE Индикаторы питания и состояния каналов связи Контроллера.

# Приложение 4. Схемы и рекомендации по подключению

**ВНИМАНИЕ!!!** В приведенных схемах цепи питания некоторых датчиков и устройств не показаны. Полную информацию по подключению питания контролируемых устройств необходимо уточнять в документации на эти устройства.

# 1. Шина RS-485

Подключение дополнительных устройств к шине интерфейса RS-485 рекомендуется выполнять кабелем UTP (витая пара). Контакты A и B разъема RS-485 подключаемый устройств необходимо соединить с контактами A и B разъема RS-485 Контроллера. Для питания подключаемых устройств рекомендуется использовать отдельный блок питания. Минусы блоков питания устройств нужно соединить с минусом Контроллера.

С целью исключения влияние помех, для линии связи надо использовать одну пару проводников из витой пары. Остальные неиспользованные проводники в витой паре со стороны Контроллера должны быть подключены к минусу его питания. Со стороны подключаемого устройства неиспользованные проводники витой пары надо соединить между собой.

Пример правильного подключения линии связи и питания подключаемых устройств:



*Примечание:* Максимальная длина линии связи интерфейса RS-485 – 200 метров. При необходимости линии связи большей длины требуется установка дополнительных резисторов 120 Ом между каналами А и В шины с обеих сторон линии связи.

ВНИМАНИЕ!!! Контроллер имеет два разъема шины RS485 – верхний и нижний. Если вы не используете устройства с протоколом ModBus, то все устройства RS-485 ZONT рекомендуем подключать на нижний порт для более стабильной работы.

# 1.1 Радиомодуль МЛ-590



Примечание: Размешать радиомодуль относительно всех контролируемых датчиков необходимо таким образом, чтобы мощность радиосигнала была приблизительно одинакова. Для этого радиомодуль может быть удален от Контроллера на допустимое расстояние, в т.ч. и вынесен за пределы здания. Если требуется увеличить дальность, то используйте Репитер МЛ-620. При размещении радиомодуля на улице необходимо обеспечить его защиту от пыли, влаги и осадков. Для этого нужно разместить радиомодуль (репитер) в распределительной коробке соответствующего класса защиты от воздействия окружающей среды.

Полное описание в Технической документации на радиомодуль МЛ-590 и на репитер МЛ-620

# 1.2 Адаптер цифровых шин

К Контроллеру можно подключить внешние универсальные или монобрендовые адаптеры цифровых шин в корпусах DIN или ECO. Полярность подключения к цифровой шине котла значения не имеет.

Схема подключения внешнего адаптера цифровой шины **ECO** по **RS-485**:



Схема подключения внешнего адаптера цифровой шины **DIN** по **RS-485**:



# 1.3 Панель управления МЛ-753 и МЛ-753 WI-FI

# Подключение по RS-485:



# 1.4 Термостат МЛ-232



Полное описание в Технической документации на комнатный термостат МЛ-232

*Примечание:* Комнатный термостат ZONT МЛ-232 предназначен для поддержания постоянной температуры в отдельной зоне обогрева. После соединения с Контроллером через интерфейс RS-485, термостат определяется в личном кабинете сервиса или приложения ZONT как новый цифровой датчик температуры. Он отображает данные о температуре в месте установки (зоне отопления) по показаниям своих датчиков.

В конфигурации Контроллера ZONT комнатный термостат МЛ-232 применяется или как датчик температуры по которому регулируется отопительный контур, или как источник данных о температуре в зоне им регулируемой. И в первом и во втором варианте через сервис ZONT пользователь может дистанционно изменить целевую температуру на комнатном термостате. Для этого необходимо в конфигурации Контроллера создать отдельный отопительный контур с комнатным термостатом МЛ-232 в качестве датчика температуры.

# 1.5 Радиотермостат МЛ-332



Полное описание в Технической документации на радиотермостат МЛ-332

Примечание: Комнатный радиотермостат ZONT МЛ-332 предназначен для контроля температуры в отдельной зоне обогрева и передачи измеренных данных на контроллер по радиоканалу на частоте 868 МГц. Радиотермостат определяется в личном кабинете сервиса или приложения ZONT как новый радиодатчик температуры.

В конфигурации Контроллера ZONT комнатный радиотермостат МЛ-332 применяется или как датчик температуры по которому регулируется отопительный контур или для мониторинга. Через сервис ZONT пользователь может дистанционно изменить целевую температуру на комнатном термостате. Для этого необходимо в конфигурации Контроллера создать отдельный отопительный контур с комнатным термостатом МЛ-332 в качестве датчика температуры.



# 1.5 Цифровые датчики ZONT

*Примечание:* Контроллер поддерживает только оригинальных цифровые датчики ZONT:

датчики температуры ZONT MЛ-778

датчики температуры/влажности ZONT МЛ-779.

Датчики других производителей с интерфейсом RS-485 с Контроллером не применяются.



Подключение нескольких датчиков по **RS-485**:

# 2. Интерфейс 1-wire

Предназначен для подключения цифровых датчиков температуры DS18S20 / DS18B20.

Рекомендации по подключению:

- В шлейф датчики необходимо подключать параллельно друг за другом. Не рекомендуем подключать датчики по радиальной схеме (такая схема не рекомендована спецификацией шины 1-wire и не гарантирует нормальной работы датчиков);
- Удаленность последнего датчика в шлейфе не должна превышать 100 м;
- Максимально допустимое расстояние датчика от шлейфа 0,7 м;

Цифровые проводные датчики температуры чувствительны к импульсным помехам в сети 220В и к электромагнитным помехам. Для снижения их воздействия на стабильность работы цифровых датчиков рекомендуется прокладывать линию связи с датчиками (шлейф) отдельно от силовых кабелей электропроводки помещения. Шлейф датчиков должен пересекаться с электропроводкой только под углом 90 градусов. Если по какой-то причине это невозможно и необходимо смонтировать шлейф параллельно - то между силовым кабелем и кабелем связи с датчиками необходимо выдерживать расстояние не менее чем 100мм.

Чтобы исключить влияние помех надо все подключения выполнять качественно, использовать витую пару (UTP) или экранированный кабель. При этом экран кабеля и все неиспользованные проводники витой пары UTP необходимо подключать с одной стороны, со стороны Контроллера, к "минусу" питания Контроллера.

Подключение датчиков по двухпроводной схеме:



Подключение датчиков по трехпроводной схеме:





При особенно сильных помехах, например на объектах где используются частотные регуляторы мощности, оборотов частотные регуляторы электродвигателей и насосов, можно использовать синфазный фильтр подавления электромагнитных помех 500 номиналом не менее мкГн С допустимым током не менее чем ток потребления всех подключенных к блоку питания устройств. Фильтр должен быть включен в разрыв цепи питания Контроллера (между блоком питания и Контроллером).

*Примечание:* Производитель оборудования не гарантирует нормальную работу неоригинальных цифровых датчиков температуры DS18S20/DS18B20. Оригинальным считается датчик с температурным сенсором производства MAXIM.

# 3. Вход NTC

Предназначен для подключения Аналоговых датчики температуры NTC-10 кОм 3950.



Аналоговые датчики NTC не имеют полярности. Подключение датчиков рекомендуем выполнять экранированным кабелем МКЭШ или кабелем UTP (витая пара). При этом экран кабеля и все неиспользуемые проводники витой пары должны быть подключены с одной стороны, со стороны Контроллера, к минусу питания Контроллера.

*Примечание:* Сопротивление датчика NTC резко уменьшается при росте температуры, поэтому при удалении датчика на большое расстояние рекомендуем использовать провод сечением не менее 0,25 кв.мм. Для монтажа удобнее использовать провод сечением не менее 0,5 кв.мм.

К Контроллеру можно подключать как оригинальные датчик ZONT МЛ-773, МЛ-774, так и не оригинальные датчики NTC-10 с характеристикой 3950, 3988. При необходимости применения с Контроллером аналоговых датчиков температуры Pt100, Pt500, Pt1000, NTC-1, NTC-1.8, NTC-2, NTC-3, NTC-5, NTC-20, NTC-47 или других, аналогичных им, в настроечных параметрах таких датчиков надо указать тип подключаемого датчика и сопротивление использованного при подключении резистора подтяжки.

*Примечание* Сопротивление резистора подтяжки в схеме подключения аналоговых датчиков температуры отличных от NTC-10 подбирается индивидуально для каждого типа датчиков.

К Контроллеру можно подключать и аналоговые датчики температуры с выходом 4-20мА. Схема подключения таких датчиков аналогична схеме подключения любых других датчиков с выходом 4-20мА.

# 4. Универсальный вход/выход

Универсальный вход/выход Контроллера имеет внутреннюю подтяжку к цепи плюс 3,3 В и на нем всегда есть напряжение 1,7 В.



К универсальному входу/выходу можно подключить:

• активные аналоговые датчики с выходом 0-5В;

• пассивные аналоговые датчики – терморезисторы, фоторезисторы и прочие;

• дискретные датчики – датчики имеющие на выходе "сухой контакт";

• устройства инженерных систем имеющие на выходе сухой контакт.

Для питания некоторых датчиков и устройств, используемых в конфигурации Контроллера, требуется напряжение +5 Вольт. Чтобы не применять отдельного блока питания можно использовать стабилизатор с фиксированным выходным напряжением + 5 В.

Схема подключения стабилизатора КР1157ЕН5А для питания датчика давления MLD-10



Вместо стабилизатора КР1157EH5A можно использовать любой аналогичный стабилизатор напряжения +5B в корпусах TO-126 или TO-92.

*Примечание*: Наименование выводов на схеме приведено для стабилизатора КР1157ЕН5А. При использовании аналогов, наименование выводов надо смотреть в документации на стабилизатор

# 4.1 Подключение аналоговых датчиков температуры NTC

Для подключения датчиков температуры NTC-10 к универсальным входам/выходам необходимо использовать подтягивающий резистор 15 кОм с точностью 1%, подключенный между входом и клеммой питания "+12 В".



Аналоговые датчики NTC не имеют полярности. Подключение датчиков рекомендуем выполнять экранированным кабелем МКЭШ или кабелем UTP (витая пара). При этом экран кабеля и все неиспользуемые проводники витой пары должны быть подключены с одной стороны, со стороны Контроллера, к минусу питания Контроллера.

Примечание: Сопротивление датчика NTC резко уменьшается при росте температуры, поэтому при удалении датчика на большое расстояние рекомендуем использовать провод сечением не менее 0,25 кв.мм. Для монтажа удобнее использовать провод сечением не менее 0,5 кв.мм.

К Контроллеру можно подключать как оригинальные датчик ZONT МЛ-773, МЛ-774, так и не оригинальные датчики NTC-10 с характеристикой 3950, 3988. При необходимости применения с Контроллером аналоговых датчиков температуры Pt100, Pt500, Pt1000, NTC-1, NTC-1.8, NTC-2, NTC-3, NTC-5, NTC-20, NTC-47 или других, аналогичных им, в настроечных параметрах таких датчиков надо указать тип подключаемого датчика и сопротивление использованного при подключении резистора подтяжки.

*Примечание* Сопротивление резистора подтяжки в схеме подключения аналоговых датчиков температуры отличных от NTC-10 подбирается индивидуально для каждого типа датчиков.

*Примечание* К Контроллеру можно подключать и аналоговые датчики температуры с выходом 4-20мА. Схема подключения таких датчиков аналогична схеме подключения любых других датчиков с выходом 4-20мА.

# 4.2 Подключение аналоговых датчиков давления



# <u>Датчик давления MLD-10</u>:

Диапазон измеряемого давления 0-10 бар. Максимально допустимая температура измеряемой среды + 110 °С.

• черный – "минус" основного питания контроллера;

• красный – + 5В от отдельного блока питания или преобразователя напряжения 12В/5 В;

• желтый – сигнальный выход датчика.

# 

Датчик давления MLD-10.01:

Диапазон измеряемого давления 0-10 бар. Макс. допустимая температура измеряемой среды + 70 °С.

- черный "минус" основного питания контроллера;
- красный + 12В основного питания контроллера;
- желтый сигнальный выход датчика.

# Датчик давления НК 3022:



Диапазон измеряемого давления 0-5 бар или 0-10 бар. Макс. допустимая температура измеряемой среды + 85 °C

- черный "минус" основного питания контроллера;
- красный + 5В от отдельного блока питания или преобразователя напряжения 12В/5 В;
  - желтый сигнальный выход датчика.

Примечание: Для получения более точных показаний датчиков давления рекомендуется тип сенсора входа Контроллера, выбранного для контроля такого датчика указать "аналоговый вход"и использовать таблицу пересчета напряжения на выходе датчика в давление.

Значения показаний для заполнения таблицы получаются опытным путем.

Т.к. датчики давления имеют линейную зависимость, то достаточно указать 2 точки – нулевого давления и рабочего. В качестве измерительного прибора давления можно использовать показания манометра системы отопления или данные из цифровой шины котла, а напряжение измерять вольтметром.

			Действ	ИЯ
Выпол	нить при			
выходе	е за	HE	выбран	o +
верхни	ій порог			
Выпол	нить при			
выходе	e 3a	HE	выбран	0 +
нижни	й порог			
Выпол	нить при	HE	выбран	0 +
восста	новлении			
Давлен	ние, бар			
Давлен Пересчи	ние, бар итанное	Напряж	ение	•
Давлен Пересчи значени	ние, бар итанное ие	Напряж	ение	•
Давлен Пересчи значени 0	ние, бар итанное ие бар	Напряж 0,5	ение	C Î
Давлен Пересчи значени 0	ние, бар итанное не бар	Напряж 0,5	ение	0
Давлен Пересчи значени 0 5	ние, бар итанное не бар бар	Напряж 0,5 4,5	в	C Î
Давлен Пересчи значени 0 5	ние, бар итанное ке бар бар	Напряж 0,5 4,5	в	G II II
Давлен Давлен значени 0 5	ние, бар итанное те бар бар	Напряж 0,5 4,5	в	

Для датчика можно задать:

- Верхний и нижний порог контролируемого давления, которые используются для формирования оповещений или выполнения Контроллером заданных действий при отклонении давления за эти пороги;
- Длительность уровня параметр отвечающий за чувствительность датчика;
- Контроль без охраны датчик контролируется 24/7;
- Событие на сервер при срабатывании" разрешает или запрещает оповещения в личном кабинете сервиса;
## 4.3 Подключение датчиков дыма

Датчики дыма ИП-212 или аналогичные им подключаются к универсальным входам контроллера с заданным типом сенсора "*Датчик дыма*".

После сработки датчика для возврата в состояние "*норма*" он требует перезагрузки по питанию. Поэтому в конфигурации Контроллера надо выполнить следующие настройки:

В настройке "Действия с выходом" создать *действие "сброс датчика дыма*" для универсального вход/выхода, назначенного как вход для контроля данного датчика. В этой же настройке (для команды сброса питания) указать *тип действия "включить на время 1 сек*";

На вкладке "Охрана" создать охранную зону, где указать данный "датчик дыма", а для "действия при постановке на охрану/снятии с охраны" - задать действие с выходом – "сброс датчика дыма".

Таким образом возврат датчика дыма из состояния "*пожар*" в состояние "*норма*" будет осуществляться дистанционно по команде снятия и постановки в охрану данной зоны.

Схема подключения шлейфа из 3-х датчиков дыма ИП-212.



Для правильной работы датчиков требуется установка дополнительных резисторов:

Резистор подтяжки к питанию – 2 кОм;

Оконечный резистор шлейфа – 4,7 кОм.

Так как **напряжение питания** на контроллере **"+12 В"**, то для расчета пороговых значений контролируемого напряжения на шлейфе датчиков дыма и определения факта срабатывания используется следующие формулы:

- верхний порог напряжение больше U * 0,85 обрыв шлейфа;
- нижний порог напряжение меньше U * 0,52 сработал один из датчиков или закорочен шлейф;
- рекомендуемое напряжение для состояния Норма 0,7 * U (фактически 10,2 В при U=15 В, т.е. 0,68 * U);
- рекомендуемое напряжение для состояния Сработал 0,29 * U (фактически 5,21 В при U=15 В, т.е. 0,35 * U).

*Примечание:* Если необходимо в один шлейф собрать более 3-х датчиков дыма, то надо уменьшать сопротивление резистора подтяжки питания, подключенного ко входу Контроллера.

Для этого можно использовать миниатюрный резистор переменного сопротивления. При помощи движка измените сопротивление переменного резистора таким образом, чтобы напряжение на входе Контроллера стало равно 0,7 * U, После этого можно замерить сопротивление переменного резистора при текущем положении движка и заменить на резистор с постоянным сопротивлением или оставить переменный резистор в шкафу, закрепив его в пучке проводов.



### 4.4 Подключение датчиков протечки

Датчики протечки Астра 361 или аналогичные им подключаются к универсальным входам контроллера с заданным типом сенсора "*Датчик протечки*". При неправильной полярности подключения датчик Астра 361 всегда показывает сработку.

При попадании влаги на контакты датчика уменьшается его сопротивление, и уменьшается напряжение на его выходе. Контроллер при этом фиксирует факт сработки датчика. В веб-сервисе индикация состояния датчика: в нормальном состоянии 🕸 и в состоянии сработки 🔂. Если в

настройках датчика включен параметр "Контроль без охраны", то при сработке панель датчика меняет цвет на красный цвет тревоги  $\bigcirc$ .

Так как **напряжение питания** на контроллере **"+12 В"**, то для расчета пороговых значений контролируемого напряжения на шлейфе датчиков протечки и определения факта срабатывания используется следующие формулы:

- верхний порог напряжение больше 0,75*U оборван шлейф;
- нижний порог напряжение меньше 0,25*U сработал датчик или закорочен шлейф;
- рекомендуемое напряжение для состояния Норма 0,5 * U;



## 4.5 Подключение аналоговых датчиков с выходом 4-20 мА

Аналоговые датчики с выходом 4-20 мА (токовые датчики) подключаются к специализированным входам Контроллера. При настройке аппаратного входа для контроля датчика необходимо выбрать тип сенсора "*Аналоговый вход*".

Для контроля и отображения значения силы тока, протекающего через датчик на входе Контроллера, достаточно указать только единицы измерения (мА).

Для контроля и отображения параметров физических величин, контролируемых датчиком (давления, скорости, температуры, расхода и т.п.), необходимо использовать таблицу пересчета тока в единицу измерения датчика.

Например для датчика давления с выходом 4-20 мА и диапазоном измерения 0-10 бар задать единицы измерения (бар), а в таблице пересчета указать две точки: 4 мА - 0 бар и 20 мА - 10 бар

Датчики 💿	Название ⊘	Номер аппаратного входа
Напряжение	Датчик	Токовый вход №1 (4-20 ma) —
питания 🗋 📋	Тип сенсора 🕜	
12.4 B	Аналоговый вход	Ŧ
Напряжение	Порог срабатывания, бар	Длительность уровня, сек 🕜
🗄 батареи 🗋 📋	Нижний О О Верхний	Неактив 2 Актив 1
4 B		
🗉 Датчик 「 📋		С Контроль без охраны (ў
+ добавить	🗹 Использовать таблицу пересчета	Контроль при отсутствии 🔿 питания
		Событие на сервер при срабатывании 🕐

Единицы измер	ения				
Давление, бар	)				-
Пересчитанное	значение	Сила тока			0
0	бар	4	мА	Î	H
10	бар	20	мА	Î	H

Токовые датчики бывают активные и требуют подключения внешнего питания (в этом случае к датчику подходит три или четыре провода) и пассивные (эти датчики имеют два провода).

## Схемы подключения активного токового датчика 4-20мА



Схема подключения пассивного токового датчика 4-20мА с фиксированным питанием 24В



Схема подключения пассивного токового датчика 4-20мА с диапазоном питания 9-36В



## 4.6 Подключение аналоговых резистивных датчиков

Резистивные датчики (фоторезисторы, терморезисторы, тензорезисторы, датчики перемещения, измерения уровня жидкостей и др.) при изменении параметров измеряемой ими физической среды меняют сопротивление на своем выходе. Диапазон измерения сопротивления датчиков: 10 кОм – 200 кОм.



В качестве примера приведена схема подключения фоторезистора. Подключение других резистивных датчиков производится аналогично.

Диапазон измерения сопротивления датчиков: 10 кОм – 200 кОм.

Примечание: Обратите внимание, что при измерении сопротивления датчиков наблюдается высокая погрешность во всем диапазоне измерений, поэтому не стоит ожидать точного значения сопротивления. При использовании большинства датчиков, нет необходимости в высокой точности измерения сопротивления. Например для включении уличного освещения в зависимости от освещенности на улице, нужно опытным путем выставить в настройках датчика границы сопротивления фоторезистора и в дальнейшем их откорректировать под ту освещенность, при которой вам необходимо включать и отключать освещение.

При необходимости получения точных физических параметров измеряемой среды необходимо при помощи поверенного измерительного прибора заполнить таблицу пересчета.

### 4.7 Подключение датчиков с дискретным выходом

Датчики или устройства с выходом типа "Сухой контакт без потенциала" подключаются непосредственно к универсальному входу Контроллера.

Датчики или устройства с выходом на котором присутствует какой-либо потенциал подключаются к универсальному входу Контроллера через промежуточное реле, используемое в качестве гальванической развязки.

**ВНИМАНИЕ!!!** Контроллер адаптирован для подключения датчиков различного назначения. Для каждого вида датчиков предназначен *стандартный "Тип сенсора"*, который необходимо выбрать и указать при настройке используемого для его контроля универсального входа/выхода Контроллера.

Для устройств общего назначения (информационных, датчиков И аварийных или технологических) допускается использовать универсальный "Тип сенсора". Это тип "Дискретный вход нормально разомкнутый" и тип "Дискретный вход нормально замкнутый". Использование универсального "Типа сенсора" позволяет не учитывать подключен ли датчик между общим проводом схемы и выходом, или подключен между плюсом питания и входом. Т.е.

для срабатывания можно подать на вход или плюс напряжения питания или минус питания (GND). Это упрощает схему подключение датчиков и позволяет отказаться от резисторов подтяжки, обязательных для стандартных "Типов сенсора".

*Примечание:* Если по каким то причинам, например при наводках на длинные линии связи датчиков с Контроллером, возникают ложные срабатывания, необходимо применить резисторы подтяжки и использовать стандартный "Тип сенсора".

Пороговые значения напряжения на входе Контроллера при выборе универсального "Типа сенсора" одинаковы:

## "Дискретный вход нормально разомкнутый"

- верхний порог = 2B напряжение больше чем 2B считается "сработкой" датчика;
- нижний порог = 1B напряжение меньше меньше 1B считается "сработкой" датчика;
- напряжение на входе от 1-го до 2-х В считается "нормой" датчика.

### Схемы для подключения НЗ датчиков



"Дискретный вход нормально замкнутый"

- верхний порог = 2B напряжение больше чем 2B считается "нормой" датчика;
- нижний порог = 1B напряжение меньше меньше 1B считается "нормой" датчика;
- напряжение на входе от 1-го до 2-х В считается "сработкой" датчика.

Схемы для подключения НР датчиков



**ВНИМАНИЕ!!!** В схемах, которые приведены ниже в качестве примеров подключения входы Контроллера настроены под стандартный "Тип сенсора", и не показаны цепи питания датчиков и устройств.

## 4.7.1 Магнитоконтактный датчик (геркон)

Магнитоконтактный датчик (геркон) - это датчик с нормально замкнутыми контактами. При размыкании частей датчика фиксируется состояние сработки. Для такого датчика необходимо выбирать тип сенсора "*Магнитный датчик открывания двери/окна*"

В группе контроля датчиков сервиса на панели магнитоконтактного датчика отображается индикация его состояния — "норма" и — "тревога". Панель датчика при срабатывании окрашивается в красный цвет.

Так как **напряжение питания** на контроллере **"+12 В"**, то для расчета пороговых значений контролируемого напряжения на шлейфе магнитоконтактных датчиков и определения факта срабатывания используются следующие формулы:

- верхний порог напряжение больше U * 0,75 "тревога" (открыт);
- нижний порог напряжение меньше U * 0,25 "норма" (закрыт);
- напряжение на входе в состоянии "норма" 0 В;
- напряжение на входе в состоянии "тревога" 1 * U В.

*Примечание:* При необходимости контроля нескольких магнитоконтактных датчиков на одном универсальном входе Контроллера, датчики подключаются последовательно в шлейф. Таким образом при срабатывании одного из датчиков происходит срабатывание всего шлейфа и фиксируется Тревога на входе Контроллера.

Схема подключения герконов и аналогичных им датчиков с нормально замкнутым контактом.



### 4.7.2 ИК датчик движения

ИК датчик движения является датчиком с нормально замкнутыми контактами. Настройкой универсального входа Контроллера предусмотрено 2 способа его контроля: без контроля факта обрыва или замыкания и с контролем обрыва и замыкания. В группе контроля датчиков сервиса

на панели датчика движения отображается индикация его состояния "тревога". Панель датчика при срабатывании и обрыве/замыкании шлейфа окрашивается в красный цвет.

## ИК датчик движения без контроля обрыва или замыкания шлейфа

Для контроля срабатывания ИК датчика движения по факту движения без контроля обрыва или замыкания шлейфа необходимо выбирать тип сенсора *"ИК датчик движения без контроля обрыва или замыкания шлейфа*". При этом типе настройки входа Контроллер различает только два состояния: "норма" и "тревога".

Схема подключения ИК датчика движения без контроля обрыва или замыкания шлейфа:



Так как **напряжение питания** на контроллере **"+12 В"**, то для расчета пороговых значений контролируемого напряжения на шлейфе ИК датчиков и определения факта срабатывания используются следующие формулы:

- верхний порог напряжение больше U * 0,75 "тревога";
- нижний порог напряжение меньше U * 0,25 "норма";
- напряжение на входе в состоянии "норма" 0 В;
- напряжение на входе в состоянии "тревога" 1 * U В.

## ИК датчик движения с контролем обрыва или замыкания шлейфа

Для контроля срабатывания ИК датчика движения по факту движения и для контроля обрыва или замыкания его шлейфа необходимо выбирать тип сенсора *"ИК датчик движения с контролем обрыва или замыкания шлейфа*". При этом типе настройки входа Контроллер различает четыре состояния: норма, тревога, обрыв и короткое замыкание.

Схема подключения шлейфа датчиков движения с замкнутыми контактами в режиме "норма".



Так как **напряжение питания** на контроллере **"+12 В"**, то для расчета пороговых значений контролируемого напряжения на шлейфе ИК датчиков и определения факта срабатывания используются следующие формулы:

- верхний порог напряжение больше U * 0,75 "тревога" (датчик сработал) или "обрыв" (возможно оборван шлейф);
- нижний порог напряжение меньше U * 0,25 "КЗ" (шлейф закорочен);
- напряжение на входе в режиме "норма" 0,5 * U;
- напряжение на входе в режиме "тревога" 1 * U.

## 4.7.3 Подключение комнатного термостата

Выходной сигнал от комнатного двухпозиционного термостата может быть использован для регулирования температуры теплоносителя в отопительном контуре. При настройке параметров входа для такого подключения выбирается тип сенсора "*Комнатный термостат*".

Так как **напряжение питания** на контроллере **"+12 В"**, то для расчета пороговых значений контролируемого напряжения на выходе комнатного термостата используется формулы:

- верхний порог напряжение больше U * 0,75 запрос тепла;
- нижний порог напряжение меньше U * 0,25 нет запроса тепла;
- напряжение на входе в состоянии "нет запроса тепла" 0 В;
- напряжение на входе в состоянии "запрос тепла" 1 * U В.

Термостаты по способу управления могут быть с замыканием или с размыканием контактов.

Схема подключения комнатного термостата с запросом тепла размыканием контактов

Схема подключения комнатного термостата с запросом тепла замыканием контактов



*Примечание:* Перед подключением комнатного термостата обязательно выясните каким образом (замыканием или размыканием контактов) термостат подает сигнал запроса тепла.

## 4.7.4 Контроль Аварии котла управляемого релейным способом

Для контроля используется универсальный вход Контроллера. Если при "Аварии" на плате котла происходит **размыкание контактов**, то для входа Контроллера выбирается настройка типа сенсора **"Авария котла +"** Если при "Аварии" на плате котла происходит **замыкание контактов**, то для входа Контроллера выбирается настройка типа сенсора **"Авария котла -"** 

*Примечание:* Перед подключением обязательно выясните каким образом (замыканием или размыканием контактов) на котле формируется сигнал Аварии.

**ВНИМАНИЕ!!!** На некоторых котлах сигнал Авария формируется подачей напряжения 220В на определенные контакты платы котла. Перед подключением обязательно убедитесь, что на контактах котла, подключаемых к контроллеру, отсутствует какое-либо напряжение. Если напряжение есть, то используйте промежуточное дополнительное реле.

#### Схема подключения Контроллера к котлу к для контроля сигнала "Авария +"



Для сигнала "**Авария котла +**" расчет пороговых значений контролируемого напряжения проводится по формулам:

• верхний порог – напряжение больше U * 0,75 – "Авария";

• нижний порог – напряжение меньше U * 0,25 – "Норма";

• напряжение на входе в состоянии "норма" равно 0 В;

• напряжение на входе в состоянии "авария" равно 1 * U B.

При аварии реле должно РАЗОМКНУТЬСЯ

Схема подключения Контроллера к котлу к для контроля сигнала "Авария -"



При аварии реле должно ЗАМКНУТЬСЯ

Для сигнала "**Авария котла -**" расчет пороговых значений контролируемого напряжения проводится по формулам:

• верхний порог – напряжение больше U * 0,75 – "Норма";

• нижний порог – меньше меньше U * 0,25 – "Авария";

напряжение на входе в состоянии "норма"
– 1 * U B;

• напряжение на входе в состоянии "авария" – 0 В.

# 5. Насосы и смесители

Управление электроприводами смесительных кранов и насосами осуществляется через релейные или универсальные (ОК) выходы Контроллера.

*Примечание:* Выход ОК аппаратно защищен от перегрузки при подключении индуктивной нагрузки.

## 5.1 Электропривод двухходового смесительного крана (термоголовки)

Электроприводы с напряжением питания +12 Вольт можно подключать к выходу ОК, непосредственно к клеммам Контроллера. Но при этом важно учесть, что ток потребления электропривода не должен превышать 100 мА

Схема подключения к выходу ОК:



Схема подключения к релейному выходу:



Электроприводы с напряжением питания от +24 Вольта и выше, к выходам ОК подключаются только через дополнительное промежуточное реле (в комплект не входит). Характеристики контактной группы реле должны соответствовать подключаемой нагрузке, а управляющая обмотка промежуточного реле – напряжению питания контроллера. Для удобства монтажа в шкафу рекомендуется использовать реле предназначенные для установки на DIN-рейку.



В качестве дополнительного промежуточного реле рекомендуется использовать **реле 12V DC** артикул ML00000291. Ссылка на карточку товара ресурс <u>https://zont.online/ Реле промежуточное</u> на DIN-рейку, 12V DC в сборе.

Это реле модульного типа состоит из непосредственно самого реле, модуля индикации и колодки для монтажа реле на DIN-рейку.





Для гальванической развязки электронных цепей автоматики и нагрузки допустимо использовать оптроны. При этом важно учесть, что Выход ОК одновременно является и входом, к которому подключен внутренний резистор подтяжки к цепи +3,3 В, номиналом 100 КОм.



Особенность этой схемы заключается в том, что оптореле может включиться (загорится внутренний светодиод оптрона) даже от малого тока через цепь +3,3 В - 100 КОм - оптрон - +12 В. Чтобы этого не произошло, рекомендуем включить дополнительные резисторы номиналом 1 КОм.

### 5.2 Электропривод трехходового смесительного крана

Для управления электроприводом трехходового смесительного крана необходимо использовать два выхода – один для открывания второй для закрывания.

Схема подключения электропривода к релейному выходу с защитой от одновременной подачи напряжения на вывод "открыть" и на вывод "закрыть" привода.



Схема подключения электропривода к выходам ОК через промежуточные реле с защитой от одновременной подачи напряжения на вывод "открыть" и на вывод "закрыть" привода:



## 5.3 Электропривод с аналоговым входом 0-10 Вольт

Схема подключения аналогового электропривода с напряжением питанием 24В постоянного тока к выходу 0-10В:



**ВНИМАНИЕ!!!** Некоторые приводы запитываются от источников питания переменного тока. В тех случаях когда привод имеет три вывода – два из которых питание привода и третий управляющий - схема подключения такая же как и для приводов запистананных от источников постоянного напряжения.

В том случае, если в приводе есть отдельные контакты для подключения управления 0-10В и отдельные контакты для подключения питания схемы привода от источника переменного тока схема должна быть следующей.



# 5.4 Подключение насоса



Схема подключения насоса к релейному выходу:

Насосы с напряжением питания +24 Вольта и выше, к выходам ОК подключаются только через дополнительное промежуточное реле (в комплект не входит). Характеристики контактной группы реле должны соответствовать подключаемой нагрузке, а управляющая обмотка промежуточного реле - напряжению питания контроллера.

Схема подключения насоса к выходу ОК через промежуточное реле:



## 6. Сирены и оповещатели

Для использования звукового оповещателя "Сирена" в качестве звуковой сигнализации в охранной зоне, необходимо в конфигурации Контроллера создать *исполнительное устройство "Сирена"* с указанием используемого для его управления выхода. Для подключения светозвукового оповещателя необходимо создать исполнительные устройства "Сирена" и "Индикатор".

Подробнее в Части 2, Раздел 20. Функции охранной сигнализации.

**Звуковые оповещатели** с напряжением питания +12В допустимо подключать непосредственно к выходу ОК Контроллера.



Для подключения светозвуковых оповещателей используются два выхода контроллера.



*Примечание*: В неактивном состоянии выхода ОК из-за утечки тока при подключении нагрузки с высоким сопротивлением, у некоторых типов светозвуковых оповещателей (например МАРС-12 КП), может наблюдаться слабое свечение светодиода и треск или писк динамика. Для исключения такого эффекта рекомендуется подключать оповещатели через промежуточное реле.

# 7. Считыватели ключей Touch Memory

Считыватели ключей Touch Memory могут быть применены для использования при постановке на охрану или снятии с охраны "Охранных зон". Подробное описание применения Контроллера для этих целей см. Подробнее в <u>Части 2, Раздел 20. Функции охранной сигнализации</u>.

Считыватель ключей Touch Memory подключается к шине 1-wire. Если необходимо подключить индикатор считывателя используется схема с дополнительным ограничивающем резистором 1 кОм. Будьте внимательны: на некоторых считывателях этот резистор уже установлен и дополнительный применять не нужно.

Схема подключения к выходу ОК

# Схема подключения к релейному выходу



## 8. Внешние котловые панели управления

Некоторые модели котлов имеют в своем составе внешнюю панель управления, которая подключается к тому же разъему платы управления, что используется для подключении адаптера цифровой шины Контроллера. Одновременное применение двух цифровых устройств для управления котлом штатно не предусмотрено. Поэтому обычно съемная панель отключается от котла и не используется, а управление котлом осуществляется по командам Контроллера.

Однако существует способ, позволяющий организовать одновременное подключение и съемной цифровой панели управления и адаптера цифровой шины. Для этого необходимо использовать двухполюсный трехпозиционный переключатель:



Подобное управление может быть использовано на котлах BAXI, где применяется съемная цифровая панель COMFORT, и на котлах NAVIEN, где есть штатный выносной пульт. Управление котлом при этом возможно или по командам Контроллера или по командам от панели

Переключение способов управления выполняется по следующему алгоритму: нужно сначала выключить котел, потом перевести переключатель в положения связи котла с панелью и снова включить котел. Для возврата к управлению от Контроллера – выполнить те же операции в обратном порядке.

## Приложение 5. SMS оповещение и управление

## 1. SMS оповещения

Информирование Пользователя о контролируемых событиях осуществляется через SMS-оповещения, которые отправляются GSM-модемом Контроллера на "Доверенные"

телефонные номера. Доверенными, являются номера телефонов, указанные в блоке настроек "Пользователи".

SMS-оповещение может быть при условии наличия основного или резервного питания Контроллера, и необходимых для GSM-связи средств на сим-карте.

Текст SMS-оповещений вводится в блоке настроек "Оповещения".

< оповещения × ×	
Доверенные номера	
Оповещения	< ^{Оповещения} • 🔍 🗙
∃ Баланс ниже порога	Потеря связи с внешним устройством
Пропадание основного питания	Название ⑦ Потеря связи с внешним устройством
≡ Появление основного питания	Текст смс оповещения (2)
∃ Потеря связи с внешним устройством	\$name\$ нет соединения!
∃ Ошибка котла	Элементы
≡ оповещение	Список получателей ВыбРАНО: 1 +
+ ДОБАВИТЬ	

Можно настраивать SMS-оповещения произвольного содержания. Их можно удалять и корректировать.

Заводской конфигурацией предусмотрены *типовые SMS-оповещения*, применимые к разным событиям (датчикам, параметрам, пользователям).

В такое SMS-оповещение вставляется ключевое слово-идентификатор, определяющее привязку к конкретному событию, датчику или получателю.

Слово-идентификатор вводится со специальными символами:

\$name\$ – имя датчика или объекта, к которому относится оповещение;
\$username\$ – имя получателя оповещения;
\$time\$ – время события по которому сформировано оповещение;
\$value\$ – значение контролируемого параметра.

#### Например:

Событие – Внимание тревога Гостиная Запись SMS-оповещения – Внимание тревога \$name\$

Событие – Внимание, Виктор обнаружено движение по зоне Гостиная в 18-00 Запись SMS-оповещения – Внимание, \$username\$ обнаружено движение по зоне \$name\$ в \$time\$.

## 2. SMS управление

Контроллером можно управлять через SMS-команды, отправляемые Пользователем с "Доверенных" номеров.

Написание SMS-команды выполняется строго с учетом регистра и только строчными буквами. Название контуров и охранных зон в SMS-командах должно быть написано именно так, как они введены Пользователем при составлении конфигурационного файла Контроллера. Если название состоит из двух или более слов или слова и цифры, их нужно писать слитно, без пробела между ними. Пробел воспринимается Контроллером как разделение имени объекта и команды.

*Например:* Название охранной зоны №1 в настройке конфигурационного файла введено как **ЗОНА1** В SMS-команде название зоны должно быть написано как **ЗОНА1**.

Список возможных команд приведен в таблице ниже:

SMS-команда	Ответ на команду	Выполняемое действие
охрана	имена охранных зон и их состояние	информирование о состоянии режима охраны в охранных зонах
охрана вкл	команда постановки выполнена	включение режим охраны (постановка на охрану) <i>Примечание</i> Команда применима только если охранная зона единственная
охрана выкл	команда снятия выполнена	выключение режима охраны (снятие с охран) <i>Примечание</i> Команда применима только если охранная зона единственная
охрана вкл ЗОНА1, ЗОНА2	команда постановки зоны ЗОНА1 выполнена команда постановки зоны ЗОНА2 выполнена	включение режима охраны в зонах 3ОНА1 и 3ОНА2 <i>Примечание</i> если для какой-то зоны, например 3ОНА2, управление по SMS не настроено в пользовательской роли, то ответ на команду будет содержать дополнение: ошибка доступа: зона 3ОНА2
охрана выкл ЗОНА1, ЗОНА2	команда снятия зоны ЗОНА1, ЗОНА2 выполнена	выключение режима охраны в зонах 30НА1 и 30НА2

режим	действующий режим и целевые температуры контуров, указанных в нем	информирование о текущем режиме отопления в контуре и целевых температурах в контурах
режим НАЗВАНИЕ	режим НАЗВАНИЕ установлен	включение режима отопления НАЗВАНИЕ
режим НАЗВАНИЕ, КОНТУР 1, Контур 2	режим НАЗВАНИЕ установлен для контура 'КОНТУР1', 'КОНТУР 2'	включение режима отопление НАЗВАНИЕ для контуров КОНТУР 1 и КОНТУР 2
баланс	баланс XXXXXX	информирование о балансе средств на SIM-карте

*Примечание:* Запятые в тексте SMS обязательны – они разделяют поля.

Если SMS-команду необходимо отправить с номера телефона не из списка "Доверенных", то необходимо предусмотреть при настройке "пароль для управления с другого номера телефона":

К Пользователи • я	► ►
Имя 🕐	
Я	
Пароль для управления с другого телефонного номера	
1111	O
Список телефонов	
+7 (903) 118-18-29	1

SMS команда в этом будет иметь вид: 1111 режим КОМФОРТ

## Специальные SMS-команды:

**root RESTART** – перезагрузка Контроллера без выключения питания, **root DEFAULT** – сброс Контроллера к заводским установкам.